Short Title: Int. J. Mech. Eng. Robot. Res.
Frequency: Bimonthly
Professor of School of Engineering, Design and Built Environment, Western Sydney University, Australia. His research interests cover Industry 4.0, Additive Manufacturing, Advanced Engineering Materials and Structures (Metals and Composites), Multi-scale Modelling of Materials and Structures, Metal Forming and Metal Surface Treatment.
2025-01-20
2025-01-09
2024-12-18
Abstract—In this paper, a single-item, multi-stage, sequential production system is considered. Materials in the system are controlled by Kanban discipline. And total number of Kanbans over a given number of serial workstations is allocated. Three main objectives, the average throughput rate (to be maximized), the average workin-process (to be minimized), machine idle time should be reduced due to lack of material are considered. We provide the optimal inventory control policy and characterize its structural properties for the single-period model. Through an extensive numerical study, we demonstrate that applied Toyota methodology policy is sufficiently accurate and close to optimal. Index Terms—average inventory; Inventory management; Toyota Production System TPS, KANBAN
Cite: V M Nistane and Srinivas Viswanath V, "Inventory Control by Toyota Production System Kanban Methodology-A Case Study," International Journal of Mechanical Engineering and Robotics Research, Vol.2, No. 1, pp. 93-106, January 2013.