Short Title: Int. J. Mech. Eng. Robot. Res.
Frequency: Bimonthly
Professor of School of Engineering, Design and Built Environment, Western Sydney University, Australia. His research interests cover Industry 4.0, Additive Manufacturing, Advanced Engineering Materials and Structures (Metals and Composites), Multi-scale Modelling of Materials and Structures, Metal Forming and Metal Surface Treatment.
2025-01-09
2024-12-18
2024-10-25
Abstract—The various scientific laws, principles are used to develop mathematical models. Often the differential equations are used to describe the system. But, formulating the differential equations for most problems is difficult and hence obtaining the solutions by exact methods of analysis is a formidable task. The present research discusses the issue of the finding the field variable deviation for quadratic area of one dimensional continuum. The analysis provides the percentage error in the field variable for the selected trial functions. Approximate method is useful, if it is integrated with computer for the problem involving a number of complexities without making drastic assumption which otherwise complicated to attempt by classical methods. A genuine necessity for obtaining precise solution for the different numerical approximation methods is overcome by developing in-house computer program. Graphically results can be displayed to know the effect of considered weights and the constants assumed. Index Terms—Numerical methods, Field variable, MATLAB, Mathematical modeling
Cite: Nitin Sawarkar, Bhushan Mahajan, Manoj Baseshankar, and Dnyaneshwar Kawadkar, "Estimating the Error of Field Variable for Numerical Approximation Techniques Using MATLAB," International Journal of Mechanical Engineering and Robotics Research, Vol. 3, No. 1, pp. 292-301, January 2014.