Short Title: Int. J. Mech. Eng. Robot. Res.
Frequency: Bimonthly
Professor of School of Engineering, Design and Built Environment, Western Sydney University, Australia. His research interests cover Industry 4.0, Additive Manufacturing, Advanced Engineering Materials and Structures (Metals and Composites), Multi-scale Modelling of Materials and Structures, Metal Forming and Metal Surface Treatment.
2024-12-18
2024-10-25
Abstract— Metal matrix composites (MMCs) possess significantly improved properties including high specific strength; specific modulus, damping capacity and good wear resistance compared to unreinforced alloys. There has been an increasing interest in composites containing low density and low cost reinforcements. Among various discontinuous dispersoids used, fly ash is one of the most inexpensive and low density reinforcement available in large quantities as solid waste byproduct during combustion of coal in thermal power plants. Hence, composites with fly ash as reinforcement are likely to overcome the cost barrier for wide spread applications in automotive and small engine applications. It is therefore expected that the incorporation of fly ash particles in aluminium alloy will promote yet another use of this low-cost waste by-product and, at the same time, has the potential for conserving energy intensive aluminium and thereby, reducing the cost of aluminium products. Now a days the particulate reinforced aluminium matrix composite are gaining importance because of their low cost with advantages like isotropic properties and the possibility of secondary processing facilitating fabrication of secondary components. The present investigation has been focused on the utilization of abundantly available industrial waste fly-ash in useful manner by dispersing it into aluminium to produce composites by stir casting method. Index Terms— Particulate composites, Industrial waste, Applied load and sliding velocity
Cite: Yellappa M, Puneet U, G V Krishnareddy, Giriswamy B G, and Satyamurthy N, " Fabrication and Characterization of Aluminium-Fly Ash Composite Using Stir Casting Method," International Journal of Mechanical Engineering and Robotics Research, Vol. 3, No. 2, pp. 331-332, April 2014.