Short Title: Int. J. Mech. Eng. Robot. Res.
Frequency: Bimonthly
Professor of School of Engineering, Design and Built Environment, Western Sydney University, Australia. His research interests cover Industry 4.0, Additive Manufacturing, Advanced Engineering Materials and Structures (Metals and Composites), Multi-scale Modelling of Materials and Structures, Metal Forming and Metal Surface Treatment.
2024-12-18
2024-10-25
Abstract— In this paper, we propose and demonstrate the functionality of a novel exoskeleton which provides variable resistance training for human hands. It is intended for people who suffer from diminished hand strength and low dexterity due to non-severe forms of neuropathy or other ailments. A new variable-stiffness mechanism is designed based on the concept of aligning three different sized springs to produce four different levels of stiffness, for variable kinesthetic feedback during an exercise. Moreover, the design incorporates an interactive computer game and a flexible sensor-based glove that motivates the patients to use the exoskeleton. The patients can exercise their hands by playing the game and see their progress recorded from the glove for further motivation. Thus the rehabilitation training will be consistent and the patients will re-learn proper hand function through neuroplasticity. The developed exoskeleton is intrinsically safe when compared with active exoskeleton systems since the applied compliance provides only passive resistance. The design is also comparatively lighter than literature designs and commercial platforms.