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Abstract—This paper describes the efficient strategy for 

guidance and control of a space rover using estimated 

position and a map acquired by using FastSLAM 

(Simultaneous Localization and Mapping) algorithm using a 

particle filter. A guidance law based on potential function 

method is also designed to cope with topographical change 

on a planet. Using the method, local minima problem in the 

potential field are frequently occurred when designing 

repulsive potential functions so as to avoid obstacles. To 

overcome the problem, we propose the new method that 

generates repulsive potential function at particles in 

FastSLAM for an exploration rover in unknown 

environment. Numerical results are performed to verify the 

validity of the proposed method for solving local minimum 

problem. Adaptive temperature parallel simulated 

annealing (ATPSA) method that is usually used to escape 

local minima is also applied to the system for comparison. 

Index Terms—component; FastSLAM; potential 

function method; repulsive particles; particle filter; space 

rover 

I.  INTRODUCTION 

It is practical and effective to use a space rover in 
exploration of a planet where manned exploration is 
impossible. Conventional space rover designs a path to a 
destination, and identifies its position by matching images 
of a camera mounted on a space rover with terrain images 
from an orbiting satellite. However, a space rover has 
difficulty identifying its position if mutual communication 
with an orbiting satellite is interrupted on account of an 
unexpected accident, or in the case of absence of an 
artificial satellite in orbit around a planet. Furthermore, 
the conventional method does not respond quickly to a 
sudden change in terrain because a space rover normally 
designs a path in advance. 

The method using SLAM and the potential function 
method is considered as one of the effective methods. 
SLAM is the method of performing localization and 
mapping simultaneously with sensors mounted on a space 
rover, and the potential function method is the way by 
which a space rover is steered to the destination and avoid 
obstacles without a designed path in advance, i.e., a space 
rover can perform autonomous exploration in an unknown 
environment. However, an exploration of a space rover 
will be interrupted, and continuation of the mission will 
be almost impossible if it falls into local minima 
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generated by a dense area of obstacles during the mission. 
ATPSA developed from SA (Simulated Annealing) that is 
one of the global optimum solution search method is 
proposed in order to solve this problem. This method 
requires iterative calculation to search the solution. As a 
result, it is difficult to implement this method in actual 
equipment because it takes a huge amount of time to 
escape local minima.  

We propose the method combining the detecting local 
minima method with FastSLAM and the potential 
function method for the purpose of escaping local minima 
smoothly. 

The number of times of resampling changes 
depending on the various landform when a space rover 
constructs the map information. This variation is applied 
to the detective of local minima, and a space rover escapes 
local minima by generating the repulsive function on 
particles used in FastSLAM. Comparing with ATPSA as a 
conventional method, the proposed method is possible to 
reduce the computational load. 

We confirm effectiveness of the proposed method for 
the escaping local minima through numerical simulation. 

II.   GUIDANCE OF SPACE ROVER 

A. Equation of Motion 

Fig. 1 shows definition of a coordinate system and 
variable related to the kinematics of a space rover. Then, 
discrete-time state equation is expressed by the following 
equation. It is assumed that the motion of a space rover is 
restricted in 𝑋𝑌 plane. 

 
Figure 1.  Definition of state variables of space rover. 
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𝐗𝑅(𝑘 + 1) = 𝐟(𝐗𝑅(𝑘), 𝜔(𝑘), 𝑉(𝑘)) +𝐞(𝑘)         (1) 

𝐟(𝐗𝑅(𝑘), 𝜔(𝑘), 𝑉(𝑘)) = [

𝑥𝑅(𝑘) + 𝑇 𝑉(𝑘)cos 𝜃𝑅(𝑘)

𝑦R(𝑘) + 𝑇 𝑉(𝑘)sin 𝜃𝑅(𝑘)

𝜃R(𝑘) + 𝑇𝜔(𝑘)

]       (2)  

where XR(k) ∈ R3  shows the state vector of a space 

rover,  xR(k)  the X  coordinate，yR(k)  the Y  coordinate, 

θR(k) the attitude angle, V(k) the translational velocity, 
ω(k)  the angular velocity, T  the sampling period, 
e(k) ∈ R3 the process noise of covariance matrix R. The 
equation of motion takes a slip of wheels of the space 
rover and sensor noise into account. 

B. SLAM 

SLAM is a method by which a space rover is enable to 
build a map of an unknown environment on the basis of 
information obtained from its various sensor and deduce 
its location at the same time [1]-[4].  

In this study, we apply FastSLAM that uses the 
particle filter for localization and the extended Kalman 
filter for mapping to the space rover, and carry out the 
exploration mission. Fig.2 shows schematic diagram of 
SLAM. 

 
Figure 2.  Schematic representation of SLAM. 

C. FastSLAM 

It is shown as the following equation that FastSLAM 
separates the localization from the building a map to 
calculate the probability [2-4]. 

𝑃(𝑥, 𝑠|𝑧, 𝑢, 𝑐) = 𝑃(𝑥|𝑧, 𝑢, 𝑐) ∏ 𝑃(𝑠|𝑥, 𝑧, 𝑢, 𝑐)𝑛
𝑙=1      (3) 

where 𝑥  denotes the state variable, 𝑠  the map, 𝑧  the 
observed value, 𝑢 the input, 𝑐 the feature quantity of the 
obstacles,  𝑙 the 𝑙-th obstacle,  𝑛 the number of obstacles. 
In FastSLAM, the particle filter with the property of (3) 
can be used to estimate the trajectory of the space rover 
and the low dimensional EKF can be used to make a map.  

In FastSLAM, 𝑝 -th (1 ≤ 𝑝 ≤ 𝑚)  particle is defined 
by the following equation. 

[𝐘𝑘]𝑝 = ⟨[𝐱𝑘]𝑝, [𝛍1,𝑘]
𝑝

, [𝚺1,𝑘]
𝑝

, … , [𝛍𝑛,𝑘]
𝑝

, [𝚺𝑛,𝑘]
𝑝

⟩    

 (4) 

Here, 𝐱𝑘 expresses variable to estimate the path of a 

space rover,  𝛍𝑙,𝑘  the mean of estimated position in 𝑙  -

th  (1 ≤ 𝑙 ≤ 𝑛)  landmark, 𝚺𝑙,𝑘  the covariance matrix. 

There are a total of 𝑚  particles in the FastSLAM 
eventually. Filtering the posterior at time 𝑘 from the one 
at time (𝑘 − 1) generates a new particle set 𝐘𝑘 from  𝐘𝑘−1 
at time  (𝑘 − 1). Generated particle set incorporates the 
input and the measurement. This update is performed in 
the following steps. 

1) Prediction 
FastSLAM uses the input 𝑢 to sample state  𝐱𝑘 of the 

space rover from each particle at time (𝑘 − 1), i.e., the 
posterior motion of 𝑝-th particle is sampled in accordance 
with the following equation. 

[𝐱𝑘]𝑝 = 𝑃([𝐱𝑘]𝑝|[𝐱𝑘−1]𝑝, 𝑢)                   (5) 

here  [𝐱𝑘−1]𝑝  is the posterior estimate for a space rover 

location at time (𝑘 − 1). The obtained [𝐱𝑘]𝑝 is added to a 

temporary set of particles along with the previous 
trajectory [𝐱1:𝑘−1]𝑝. 

2) Measurement Update 
FastSLAM updates the posterior estimation of 

landmarks represented by the mean  [𝛍𝑙,𝑘−1]
𝑝

and the 

covariance  [𝚺𝑙,𝑘−1]
𝑝

. The new mean and covariance are 

obtained by using the EKF measurement update. 

[𝛍𝑙,𝑘]
𝑝

= [𝛍𝑙,𝑘−1]
𝑝

+ [𝐊𝑘]𝑝(𝐳𝑘 − [𝐳̂𝑘]𝑝)            (6) 

[𝚺𝑙,𝑘]
𝑝

= (𝐈 − [𝐊𝑘]𝑝[𝐇𝑘]𝑝)[𝚺𝑙,𝑘−1]
𝑝
               (7) 

in which,  [𝐊𝑘]𝑝 is the Kalman gain that is given by 

[𝐊𝑘]𝑝 = [𝚺𝑛,𝑘−1]
𝑝

[𝐇𝑘]𝑝([𝐇𝑘]𝑝[𝚺𝑛,𝑘−1]
𝑝

[𝐇𝑘]𝑝
𝑻

+ 𝐐)−1    (8) 

moreover, [𝐇𝑘]𝑝 is the Jacobian of observation model, 𝐐 

covariance matrix of the observation noise. 

3) Importance weight 
New particles in FastSLAM are weighted to reflect 

measurements 𝐳𝑘. The weight for each particle is defined 
as follows: 

[𝜔𝑘]𝑝 =
1

√|2𝜋[𝐐𝑘]𝑝|
 exp (−

1

2
(𝐳𝑘 − [𝐳̂𝑘]𝑝)𝑇[𝐐𝑘]𝑝(𝐳𝑡 − [𝐳̂𝑘]𝑝))    (9)  

with the covariance 

[𝐐𝑘]𝑝 = [𝐇𝑘]𝑝[𝚺𝑛,𝑘−1]
𝑝

[𝐇𝑘]𝑝
𝑇

+ 𝐐               (10) 

4) Low variance resampling 
FastSLAM has a process restrains the estimation error 

that occurs when a particle variance increases. This 
process is called resampling. In this study, we apply the 
low variance resampling to restrain a sampling error. 

The standard resampling selects independently some 
particles from temporary particle set by using random 
numbers. Meanwhile, low variance resampling is method 
selects a particle in accordance with a probability 
proportional to the weight with a single random number 𝑟 
selected from the interval [0 𝑚−1]. Therefore, the index 𝑈 
of selecting particles is defined as the following equation. 

507

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 6, November 2017

© 2017 Int. J. Mech. Eng. Rob. Res.



𝑈 = 𝑟 + (𝑝－１)𝑚−1 (11)  

From the above equation, the particle 𝑖  satisfied the 
following conditional expression is selected. 

𝑖 = argmin
𝑝

∑[𝜔𝑘]𝑝

𝑚

𝑝=1

≥ 𝑈 (12)  

New particles are selected with repeating this process 
𝑚 times. Fig. 3 shows schematic diagram of low variance 
resampling. 

 
Figure 3.  Schematic representation of resampling. 

D. Potential Function Method 

The potential function method is a way of generating 
an artificial potential field in an exploration area to guide 
a controlled object to a desired state while avoiding 
obstacles.  In this method, the steering potential is 
designed to guide the controlled object to the destination, 
and the repulsive potential is applied to avoid obstacles. In 
general, the potential function 𝑈(𝐱) is composed of the 
steering potential  𝑈𝑆(𝐱)  and the repulsive  𝑈𝑅(𝐱𝑙)  as 
shown in the following equation. Figs.4 and 5 show an 
example of integrated potential function and its velocity 
field [1,5]. 

𝑈𝑆(𝐱) = 𝐶𝑎√𝑥2 + 𝑦2 + 𝐿𝑎  (13)  

𝑈𝑅(𝐱𝑙) = 𝐶𝑟 ∑ exp (−
|𝐱𝑅.𝑙|

𝐿𝑟

)

𝑙

 (14)  

In the above equation, Ca expresses the magnitude of 
the gradient of the steering potential,  La  the gradient 
variation in the vicinity of the equilibrium point, Cr  the 
gradient of the repulsive potential, Lr  influence area 
relating to the repulsive potential. xR denotes the position 
vector of the space rover,  |xR.l|  represents the relative 
distance between the l-th landmark and the space rover. 
When the gradient field of the potential function defined 
by the above equation is applied to the velocity field, the 
velocity command values to the space rover in the X 
direction and the Y direction are derived as follows: 

𝑉𝑋 = −
𝜕𝑈𝑆(𝐱)

𝜕𝑋
−

𝜕𝑈𝑅(𝐱𝑙)

𝜕𝑋
 (15) 

𝑉𝑌 = −
𝜕𝑈𝑆(𝐱)

𝜕𝑌
−

𝜕𝑈𝑅(𝐱𝑙)

𝜕𝑌
 (16) 

By using these equations, the velocity command 𝑉𝑑 
and the heading angle command  𝜃𝑑  for reaching the 
destination while avoiding obstacles are derived as 
follows: 

𝑉𝑑 = √𝑉𝑋
2 + 𝑉𝑌

2 (17)  

𝜃𝑑 = tan−1 (
𝑉𝑌

𝑉𝑋

) (18)  

III. ESCAPING LOCAL MINIMA METHOD 

A. Detecting Local Minima 

In FastSLAM, each particle retains position 

information of the obstacles as shown in (4). In this way, 

robust mapping is guaranteed against a change in terrain 
with a large number of particles that keep different map 
information. However, if a space rover takes a long time 
to observe at same position, different map information 
that each particle retains is converged. As a result, 
importance weight of each particle expressed in (9) occurs 
biases notably. Moreover, effective sample size (ESS) 
expressed in (19) would decrease. 

ESS＝(∑[𝜔𝑘]𝑝
2

𝑚

𝑝=1

)

−1

 (19)  

where m is a number of particle to be used, and if this is 
resampling condition, it’s defined as the following 
equation. 

ESS <
𝑚

𝛼
 (20)  

here 𝛼 denotes threshold. This means that the frequency 
of resampling increases by taking a long time to observe 
same landmark. It is possible to utilize this characteristics 
as a means to detective local minima because space rover 
takes a long time to observe same landmark. 

 
Figure 4.  Integrated potential function. 

 
Figure 5.  Integrated velocity field. 
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B. Escaping Local Minima 

1) ATPSA 
The ATPSA is an improvement of the SA (Simulated 

Annealing) so that the acceptance rate of a solution is 50 
percent, and these methods apply the relationship between 
the temperature and the energy level of a substance. The 
ATPSA can be applied to escape local minima because 
the solution obtained by using this method gives a better 
approximation to a global optimum solution of a function 
given in a search space. Actually, its effectiveness has 
been verified by numerical simulation [1, 6, 7]. 

2) Repulsive Particles 
The mean μ of a particle in FastSLAM used for 

estimating the state of the space rover is moved by ∆μ 
toward the front of the space rover when the rover stops at 
a position that is different from a desired position. In 
addition, the variance value,𝜎2, of a particle is also varied 
by  ∆𝜎  in accordance with the average relative distance 
between the space rover and landmarks. The distribution 
of particles that is close to the local minima is defined as, 

𝑓(𝑥) =  
1

√2𝜋𝜎𝑎
2

exp { −
(𝑥 − 𝜇𝑎)2

2𝜎𝑎
2

} 
(21) 

where  𝜎𝑎
2 = (𝜎 + ∆𝜎)2  expresses the variance of a 

particle dispersed close to local minima, 𝜇𝑎 = 𝜇 + ∆𝜇 the 
dispersed mean. The subscript 𝑎 denotes a spread particle. 
The particles scattered according to (21) are repulsive 
particles, namely, the repulsive potential is designed at 
particles dispersed close to local minima. Then the space 
rover can escape local minima by scattering repulsive 
particles toward the front of the rover. 

IV. NUMERICAL SIMULATION 

 
Figure 6.  Block diagram of proposed control system. 

 

 

 
Figure 7.  Without escaping local minima.  
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Figure 8.  Escaping local minima using ATPSA 

 

 
Figure 9.  Escaping local minima using repulsive particles 

Fig. 6 shows the block diagram of the proposed 
control system. Here, 𝐱𝑑  expresses the command of the 
state vector  𝐱 , 𝑉𝑑  and  𝜃𝑑 the command velocity and 
heading angle found by the potential function method, 

respectively. 𝑥𝑅，𝑦𝑅，𝜃𝑅，and 𝑉 denote the position of 

the 𝑋 coordinate, the position of the  𝑌 coordinate, the 
attitude angle, and the velocity of the space rover. 

𝑟𝑖  and 𝜑𝑖  are the relative distance and the relative angle of 
a landmark measured by the distance sensor. These values 
are applied to FastSLAM to control the rover based using 
measured data. 

In the numerical simulation, the proposed method is 
compared with ATPSA that is one of conventional 
method for escaping local minima. Tables I to III 
represent values of parameters used in the numerical 
simulation. Figs. 7 and 9 show results in the case of 
without escaping local minima, with ATPSA, with the 
proposed repulsive particles, respectively. Fig. 7 (a) show 
that the space rover stopped at local minimum that is close 
to landmarks. On the other hand, it is clear from Figs. 8 (a) 
and 9(a) that the space rover succeeded in escaping the 
local minimum and reached the destination in both 
methods. However, using the proposed method, the space 
rover escaped the local minima smoothly in comparison 
with the result of ATPSA. Moreover, it is found that the 
calculation time to reach the destination is about half the 
time when using ATPSA. 

TABLE I.  PRAMETERS OF POTENTIAL FUNCTION  

𝐶𝑎(attractive gradient) 0.09 

𝐶𝑟(repulsive gradient) 0.06 

𝐿𝑎(sharpness) 0.3 

𝐿𝑟(area of influence) 0.4 

TABLE II.  INITIAL POSITION 

Rover position [𝑥, 𝑦, 𝜃] [1.5,3.0,0] 
Goal position [𝑥, 𝑦] [4.8,3.0] 

Landmark 1 [𝑥, 𝑦] [2.78,3.25] 

Landmark 2 [𝑥, 𝑦] [2.78,2.75] 

Landmark 3 [𝑥, 𝑦] [2.5,2.5] 

Landmark 4 [𝑥, 𝑦] [2.5,3.5] 

Landmark 5 [𝑥, 𝑦] [2.8,3.0] 

TABLE III.  PRAMETERS OF FASTSLAM 

Number of particles, 𝑀 100 

Covariance matrix of observation, 𝑄 [
0.01 0 0

0 0.01 0
0 0 0.01

] 

Covariance matrix of predict, 𝑅 [
0.1 0
0 0.01

] 

Threshold of resampling, 𝛼 2 

Mean of repulsive particles, 𝜇𝑎 [2.7,3.0] 

Variance of repulsive particles, 𝜎𝑎 0.1 

V.   CONCLUSION 

We proposed the novel method that uses repulsive 
potential generated at particles in FastSLAM for solving 
local minima problem. The method was applied to a 
space rover in unknown environment. The numerical 
results showed that the space rover completed escaping a 
local minimum quickly in comparison with ATPSA that 
is often used for obtaining a global optimum solution. It 
was, however, also recognized from numerical results 
that the obtained path using the proposed method was 
able to compensate optimality such as minimum time for 
a mission. We will design an optimal path with escaping 
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local minima for a space rover, and conduct experiments 
using the developed space rover in our future work. 

REFERENCES 

[1] K. Shibuya and K. Uchiyama, “Potential field approach with 
ATPSA for planetary exploration,” in Proc. 58th Space Science 
and Technology Conference, JSASS-2014-4473, 2014.  

[2] S. Thrun, W. Burgard, and D. Fox, “Probabilistic robotics,” MIT 
press, pp. 96~114, pp.438~481, 2005. 

[3] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit,  
“FastSLAM2.0; An improve particle filtering algorithm for 
simultaneous localization and mapping that provably converges,” 
in Proc. IJCAI, 2003, pp.1151~1156,. 

[4] P. Newman and S. and Clark, “A solution to the simultaneous 
localization and map building (SLAM) problem,” Transctions on 
Robotics and Automation, pp. 229~241, 2002. 

[5] K. Nakai and K. Uchiyama, “Vector fields for UAV guidance 
using potential function method,” AIAA Guidance Navigation, and 
Control Conference, AIAA-2013-4626, 2013. 

[6] M. Miki, T. Hiroyasu, M. Kasai, K. Ono, and T. Jitta, 
“Temperature parallel simulated annealing with adaptive 
neighborhood for continuous optimization problem,” in Proc. 
ISDA, 2002, pp.149~154. 

[7] M. Miki, T. Hiroyasu, and K. Ono, “Temperature parallel 
simulated annealing with adaptive neighborhood,” Information 
Processing Society of Japan, vol. 44, no. 4, pp.745-753, 2001.  

 

 

511

International Journal of Mechanical Engineering and Robotics Research Vol. 6, No. 6, November 2017

© 2017 Int. J. Mech. Eng. Rob. Res.




