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Abstract—The description of the kinematics of a par allel 

robot is based on its structure and geometry, it means, the 

position and orientation of the platform is analyzed by 

geometric methods. In addition, it deals with temporary 

aspects of movement in which the produced forces or 

torques are not considered. When the particle of a rigid 

body moves along equidistant trajectories of a fixed plane 

the body experiences plane movement, classified into three 

types: translational, rotational and general plane movement; 

necessary to specify the movement conditions of the active 

variables that make up a robotic mechanism for a kinematic 

analysis. Therefore, the present work focuses on the 

mathematical development of the direct and inverse 

kinematics of a parallel robot of six degrees of freedom type 

Hexa, using some strategies such as: spatial decomposition 

of robot, successive approximations by numerical methods, 

and Matlab simulations. Results shows the validity of the 

analysis.  

 

Index Terms—computing methodologies, artificial 

intelligence, planning and scheduling, robotic planning 

I. INTRODUCTION 

Kinematics is implemented in robotics for movement 

analysis which is related to a reference system located in 

bodies that are moving in space. This analysis focused on 

the relation between localization variables (position and 

orientation) of final element and active joint variables 

[1,2]. 

The main idea of localization analysis is known the 

position and orientation of any element of the platform at 

anytime. There are two kinds of problems: direct 

kinematics and inverse kinematics [3]. 

Direct kinematics consists of obtaining position and 

orientation of final element of mechanisms regarding a 

reference system from values of active joints and 

geometry previously established.  

Instead, inverse kinematics obtains values of active 

joints from the localization of final element of robot [4]. 

Both problems can be solved with some strategies such 

as: Denavit-Hartenberg (D-H) and geometric solution. D-

H is a systematic method based on frames disposition on 

each robot link hence the homogeneous transform matrix 

depends on four basic transformation parameters based 

on distance and rotation angles [5, 6]. Otherwise, 

geometric solution depends on decomposition of robot 

spatial geometry in many planar geometric problems in 
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which geometry and trigonometry are used to find the 

values of the joints variables or platform localization [7, 

8]. Parallel robots have many closed loops which hinder 

D-H application, owing to links with more than one 

degree of freedom, thus, a transform matrix 

representation is impossible. As a result, the geometric 

solution based on vectorial equations is convenient [9]. 

There exist different ways to solve the inverse kinematics, 

some leading towards unique solutions [10] [11] whereas 

others propose different techniques [12]. 

This work is focused on determining simple direct 

kinematics and inverse kinematics models of the Hexa 

robot introduced by Pierrot et. Al. [6] whose structure is 

based on 6 revolute universal spherical (RUS) limbs 

which are connected to a mobile platform. This kind of 

robots has many uses such as: simulators, packing 

mechanisms and manufacture devices [13]. 

This paper is organized as follows. First, geometric 

analysis of Hexa robot. Secondly, inverse kinematics of 

robot. Thirdly, direct kinematics analyzed with Newton 

Rhapson method. Finally, the last part concerns about 

results of simulations and conclusions. 

II. GEOMETRIC ANALYSIS OF HEXA PLATFORM 

In order to obtain the mathematical model of a Hexa 

parallel robot, it is necessary to analyze the structure and 

geometry in order to know the mobility of the robot and 

the spatial relationships of the elements that compose it. 

The schematic diagram of the analyzed parallel robot 

is shown in Figure 1 and consists of a base defined by an 

irregular hexagon and a similar platform that are 

connected through six arms of two links: input and 

coupling, with lengths of m and n, respectively. 

The links are arranged in an RSS structure, it means 

that, between them and with the mobile platform the 

connections are made by spherical joints, while the joint 

connecting the static platform and the input link is 

rotational type [14, 15]. 

A. Geometry of the Static and Mobile Platform. 

The hexagons that make up the geometry are defined 

by two magnitudes: the dimensions of the three major 

edges and the three minor edges, all of them equal to each 

other. By defining a reference system located in the 

geometrical center of the hexagon, the six vertices are 

located as shown in Table I, taking into account that the 

lengths of the major and minor edges are denoted as a and 
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b, respectively; and thus, forming a vector of positions 

denoted as Oi. 

The equations of Table I define the vertices of the 

mobile platform, only in this case the lengths of the major 

and minor edges are the same. But it must be taken into 

account that, being a mobile platform, it is subject to 

translational and rotational movements defined by the 

positioning and desired orientation of it. Then must be 

performed the multiplication of these positions with 

rotation matrices in α, β, γ, plus the sum of the desired 

positions in X, Y, Z, according to (1) and (2). 

 

 
Figure 1.

 
Hexa type platform diagram.

 

TABLE I. SIMULATION PARAMETERS 

Point 𝑋𝑜 𝑌𝑜  𝑍𝑜 

1 
√3

6
 (2𝑎 + 𝑏) 

1

2
 (𝑏) 0 

2 
√3

6
 (2𝑎 + 𝑏) −

1

2
 (𝑏) 0 

3 
√3

6
 (𝑎 − 𝑏) −

1

2
 (𝑎 + 𝑏) 0 

4 
√3

6
 (𝑎 + 2𝑏) −

1

2
 (𝑏) 0 

5 
√3

6
 (𝑎 + 2𝑏) 

1

2
 (𝑏) 0 

6 
√3

6
 (𝑎 − 𝑏) 

1

2
 (𝑎 + 𝑏) 0 

  

 

𝑅𝛼,𝛽,𝛾 = [
cos 𝛽 0 sin 𝛽

0 1 0
− sin 𝛽 0 cos 𝛽

] [
1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

] 

[
cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0

0 0 1
] 

( 1 ) 

𝐿𝑖 = 𝑅𝛼,𝛽,𝛾 ∗ 𝑝𝑖 + [𝑥 𝑦 𝑧]𝑇 ( 2 ) 

Where 𝑝𝑖  are the points of the mobile platform 

obtained from Table I. 

B. Inverse Kinematics 

In the previous section, the expressions for the location 

of the fixed platform in Oi were found as a function of the 

lengths of the major and minor edges; and for the mobile 

platform in Li  in terms of the size of the edge that forms 

the hexagon, in addition to its position and orientation. 

Now we proceed with the mathematical analysis of the 

extremities to find the solution to the inverse kinematic 

problem. To do this, each arm is located in a coordinate 

system as shown in Fig. 2, in order to perform a vector 

analysis. 

 

Figure 2. Coordinate System of the Extremities. 
 

Using the geometric of the Fig. 2, we obtain vectorially 

the expression that defines 𝑇𝑖  from the 𝑂𝑃𝐿 triangle that, 

being a non-rectangle triangle, its sides are related by the 

law of the cosine together with the angle 𝜗𝑖 and described 

mathematically in (3). But, since the value of 𝜗𝑖  is 

unknown, the definition of the dot product is applied as 

shown in (4), to finally obtain (5) that mathematically 

express 𝑇𝑖 .  

𝑇𝑖 = √𝑚2 + 𝑛2 − 2 ⋅ 𝑚 ⋅ 𝑛 ⋅ cos 𝜗𝑖 

 
( 3 ) 

𝜗𝑖 = cos−1 (
𝑀𝑖 ⋅ 𝑁𝑖

(𝑚)(𝑛)
) 

 

( 4 ) 

𝑇𝑖 = √𝑚2 + 𝑛2 − 2(𝑀𝑖 ⋅ 𝑁𝑖) 

 
( 5 ) 

Where, 𝑀𝑖 = 𝑂𝑖 − 𝑃𝑖  y 𝑁𝑖 = 𝑇𝑖 − 𝑃𝑖 . In addition, it 

must be taken into account that the coordinate system for 

each arm varies, because it must be located in the 

directions established in Fig. 3, rotated according to the 

angles specified in (6). 

 
Figure 3. Coordinate System of the Extremities 

ϕ = [0  − 60  − 60      60      60      0] ( 6 ) 

Then, the vector 𝑃𝑖  is obtained, taking into account that 

since points 1 and 6 are in different quadrants respect to 
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points 2 to 5, two different equations must be considered. 

For 1 and 6 the value of 𝑃𝑖  is described in (7) and for the 

others in (8). 

For the magnitude of 𝑇𝑖 , the mathematics are defined 

by the Pythagorean theorem as shown in (9). 

 

𝑇𝑖 = √(𝑋𝐿𝑖
− 𝑋𝑜)

2
+ (𝑌𝐿𝑖

− 𝑦𝑜)
2

+ (𝑍𝐿𝑖
)

2
 

 

( 9 ) 

Taking in to account the two equations for 𝑇𝑖  in (5) and 

(9), the terms are equated to find the equation of each arm, 

adopting the form of (10), according to Fig. 4. Where 𝐴𝑖, 

𝐵𝑖  and 𝐶𝑖, vary depending of the working point, so (11) 

are defined for points 1 and 6 and (12) for points 2 to 5. 

 
Figure 4. Graphical representation of (10). 

 

𝐴𝑖 sin 𝜃𝑖 + 𝐵𝑖 cos 𝜃𝑖 = 𝐶𝑖  ( 10 ) 

𝐴𝑖 = 2 ⋅ 𝑚 ⋅ (𝑍𝐿𝑖
− 𝑍𝑜)

𝐵𝑖 = 2 ⋅ 𝑚 ⋅ (𝑐𝑜𝑠(𝜙𝑖) ⋅ (𝑋𝑜 − 𝑋𝐿𝑖
) + 𝑠𝑖𝑛(𝜙𝑖) ⋅ (𝑌𝐿𝑖

− 𝑌𝑜))

𝐶𝑖 = 𝑛2 − 𝑚2 − (𝑋𝑜 − 𝑋𝐿𝑖
)

2
− (𝑌𝑜 − 𝑌𝐿𝑖

)
2

− (𝑍𝑜 − 𝑍𝐿𝑖
)

2

 ( 11 ) 

𝐴𝑖 = 2 ⋅ 𝑚 ⋅ (𝑍𝐿𝑖
− 𝑍𝑜)

𝐵𝑖 = 2 ⋅ 𝑚 ⋅ (𝑐𝑜𝑠(𝜙𝑖) ⋅ (𝑋𝐿𝑖
− 𝑋𝑜) + 𝑠𝑖𝑛(𝜙𝑖) ⋅ (𝑌𝐿𝑖

− 𝑌𝑜))

𝐶𝑖 = 𝑛2 − 𝑚2 − (𝑋𝑜 − 𝑋𝐿𝑖
)

2
− (𝑌𝑜 − 𝑌𝐿𝑖

)
2

− (𝑍𝑜 − 𝑍𝐿𝑖
)

2

 ( 12 ) 

 

To finally obtain the value of the angle 𝜃𝑖 of each arm, 

implementing (13). 

𝜃𝑖 = cos−1 (
𝐶𝑖

√𝐴𝑖
2 + 𝐵𝑖

2
) + tan−1 (

𝐴𝑖

𝐵𝑖

) ( 13 ) 

C. Direct Kinematics 

Direct kinematics is solved base on (14), which 

determines the length of link in terms of tridimensional 

positions of points 𝑃𝑖 y 𝐿𝑖. 

𝑛2 = (𝑋𝐿𝑖
− 𝑋𝑃𝑖

)
2

+ (𝑌𝐿𝑖
− 𝑌𝑃𝑖

)
2

+ (𝑍𝐿𝑖
− 𝑍𝑃𝑖

)
2
 ( 14 )  

Applying (14) for each arm of robot, a no-lineal 

equation system was determined due to 𝑋𝐿𝑖
, 𝑌𝐿𝑖

 y 𝑍𝐿𝑖
 are 

expresed in position and orientation terms of mobil 

platform. Hence, there are six unknowns 𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾 

which are express in 6x6 equation system showed in (15).  

𝑓𝑖 = (𝑋𝐿𝑖
− 𝑋𝑃𝑖

)
2

+ (𝑌𝐿𝑖
− 𝑌𝑃𝑖

)
2

+ (𝑍𝐿𝑖
− 𝑍𝑃𝑖

)
2

− 𝑛2 = 0 ( 15 ) 

Previous system has a unique solution and it can be 

resolved with numeric methods, for instance, Newton 

Raphson multivariable method. That method requires 

Jacobian Matrix [13] which is expressed in (16). 

𝑓´𝑥𝑖 =
𝜕𝑓𝑖

𝜕𝑥
, 𝑓´𝑦𝑖 =

𝜕𝑓𝑖

𝜕𝑦
, 𝑓´𝑧𝑖 =

𝜕𝑓𝑖

𝜕𝑧

𝑓´𝛼𝑖 =
𝜕𝑓𝑖

𝜕𝛼
, 𝑓´𝛽𝑖 =

𝜕𝑓𝑖

𝜕𝛽
, 𝑓´𝛾𝑖 =

𝜕𝑓𝑖

𝜕𝛾

 (16 ) 

Newton Rhapson method is implemented based on 

(17), objective function is related to (18). 

[𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾]𝑖+1 = [𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾] −
𝑓𝑖

𝑓´𝑖

 ( 17 ) 

𝑒𝑟𝑟𝑜𝑟 = ((𝑋 − 𝑋𝑑)2 + (𝑌 − 𝑌𝑑)2 + (𝑍 − 𝑍𝑑)2

+ (𝛼 − 𝛼𝑑)2 + (𝛽 − 𝛽𝑑)2

+ (𝛾 − 𝛾𝑑)2)1/2 ≤ 𝑡𝑜𝑙 
( 18 ) 

If the determinant of Jacobian matrix is equal zero, the 

matrix will be singular, and its inverse cannot be 

calculated. This case describes that robot loses mobility 

or cannot reach the required position because of its 

geometry. Therefore, its important calculate the inverse 

matrix following (19) [16, 17].  

𝑑𝑞

𝑑𝑡
= 𝑓′(𝑞) ⋅  �̇� ( 19 ) 

Where 𝑞  denoted generalized coordinates: 𝑥 , 𝑦 , 𝑧 , 𝛼 , 

𝛽, 𝛾. 

III. RESULTS AND DISCUSSIONS 

The simulation of the previously established 

calculations is performed with the values specified in 

Table II. And we start from a resting position for 𝑥, 𝑦, 𝑧, 

in meters 𝛼, 𝛽 , 𝛾  in degrees of [ 0, 0, −0.45, 0, 0, 0] of 

the robot as shown in Fig. 5. 

TABLE II: SIMULATION PARAMETERS 

Parameter Value 

𝑚 0.15 𝑚 

𝑛 0.35 𝑚 

𝑎 0.3 𝑚 

𝑏 0.1 𝑚 

𝑐 0.05 𝑚 

𝑃𝑖 = [

𝑚 ⋅ 𝑐𝑜𝑠(𝜃𝑖) ⋅ 𝑐𝑜𝑠(𝜙𝑖) + 𝑋𝑜

−𝑚 ⋅ 𝑐𝑜𝑠(𝜃𝑖) ⋅ 𝑠𝑖𝑛(𝜙𝑖) + 𝑌𝑜

−𝑚 ⋅ 𝑠𝑖𝑛(𝜃𝑖) + 𝑍𝑜];
] 

 

( 7 ) 

𝑃𝑖 = [

−𝑚 ⋅ 𝑐𝑜𝑠(𝜃𝑖) ⋅ 𝑐𝑜𝑠(𝜙𝑖) + 𝑋𝑜

−𝑚 ⋅ 𝑐𝑜𝑠(𝜃𝑖) ⋅ 𝑠𝑖𝑛(𝜙𝑖) + 𝑌𝑜

−𝑚 ⋅ 𝑠𝑖𝑛(𝜃𝑖) + 𝑍𝑜];
] 

 

( 8 ) 
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Figure 5. Resting position of Hexa robot 

 

From the above, we obtain different trajectories of the 

robot to verify the correct calculus of the direct and 

inverse kinematics, as seen in Figs. 6 for x, y, z, α, β, γ 

from [ 0,0.5,-0.25,45,20,0], Fig. 7 to x, y, z, α, β, γ from 

[ 0,-0.5,-0.2,45,20,30] and Fig. 8 to x, y, z, α, β, γ from 

[ 0,-0.1,-0.35,-45,-45,10]. 

IV. CONCLUSIONS 

The Hexa parallel robot has advantages over typical 

architectures such as delta configuration, since with this 

one can have control over the three degrees of position 

and three orientation, which makes it viable for the 

implementation of any type of work where both speed 

and accuracy are required, these being achieved after the 

implementation of closed control loops. 

On the other hand, the kinematic analysis of the 

parallel robotic platform is completely necessary for the 

calculation of the differential kinematics, which is crucial 

to perform a kinematic control, in addition giving the 

guidelines to perform the dynamic analysis and dynamic 

control of the platform. 

As future work, the implementation of control loops 

will be implemented to obtain the desired behaviors on 

physical platforms. 

Figure 6. Hexa robot in position 1 

 

 
Figure 7. Hexa robot in position 2 

 

 
Figure 8. Hexa robot in position 3 
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