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Abstract—This paper presents a novel anti-disturbance 

tracking control problem for Unmanned Aerial 

Vehicles(UAVs) systems. Different from the general 

external disturbances, this paper uses the neural network to 

describe the nonlinear disturbances. On this basis, a 

disturbance observer is designed to estimate the nonlinear 

disturbances. By integrating the estimation of disturbance 

with P-I control algorithm, a composite controller based on 

convex optimization theory is designed to ensure the UAVs 

system stability and convergence of the tracking error to 

zero. Finally, Matlab / Simulink is used to simulate a 

Unmanned Aerial Vehicles model, which helps to verify the 

feasibility and effectiveness of this algorithm.  
 

Index Terms—anti-disturbance control, unmanned aerial 

vehicles, tracking control, neural network model 

 

I. INTRODUCTION 

In recent years, Unmanned Aerial Vehicles have 

received more and more attention because they have a lot 

of superior performance, such as: lowcost and high 

efficiency, strong security, autonomous hovering, 

convenience and flexibility. Because of these outstand 

advantages, the Unmanned Aerial Vehicles is playing an 

increasingly important role in industrial production and 

national life. For example, agricultural monitoring, fire 

monitoring and rescuing, environmental pollution 

monitoring [1]-[3]. The Unmanned Aerial Vehicles, as s 

specific kind of aircraft, can produce unpredictable 

conditions during flight and even cause economic and 

property losses. Therefore， the requirements for the 

flying quality of UAVs are getting higher and higher. 

There is a need for some high-performance control 

algorithms to address the high performance requirements. 

New flight control algorithms are also emerging, 

including robust control, feedback linearization control, 

sliding mode variable structure control and so on. 

As is well-known to all, the exogenous disturbance 

widely exist in almost all controlled systems, such as: 

motion control systems [4], missile systems [5], 

robotmanipulators [6] as well as flight control systems. 

Thus, the research of anti-disturbance control problem 

has attracted considerable attention of both academia and 

engineers. Many elegant approaches have been presented 
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to resolve disturbance attenuation and rejection problems, 

such as: H control [7], adaptive dynamical 

compensation [8], output regulator theory [9], sliding 

mode control [10] and disturbance-observer-control 

(DOBC) [11]-[14] theory. DOBC theory was studied in 

the second half of 1980s, which has a simple structure 

and is easily applied. The essence of thought is that the 

disturbances can be estimated by disturbance-observer 

and compensated in the feed-foreword channel 

immediately. However, in the most of DOBC results, the 

exogenous disturbances are assumed to be generated by a 

linear exogenous system. The DOBC theory is invalid 

When facing with some nonlinear disturbances. 

All along, neural networks (NNs) are very powerful 

tools to approximate highly nonlinear and dynamic 

systems and has been of interest of many researchers 

during the past three decades [15]. Dynamic neural 

networks (DNNs), as a black-box identifier, have some 

memory ability and track nonlinear dynamics, which 

makes them much suited for modelling those irregular 

dynamics [16], [17].  

Motivated by the above observation, this paper 

discusses the anti-disturbance control problem for 

Unmanned Aerial Vehicles systems by using neural 

network modelling. On this basis, a disturbance observer 

is designed to estimate the nonlinear disturbances. By 

integrating the estimation of disturbance with P-I control 

algorithm, a composite controller based on convex 

optimization theory is designed to ensure the UAV 

systems stability and convergence of the tracking error to 

zero.  

In this paper, if not stated, matrices are assumed to 

have compatible dimensions. The identity and zero 

matrices are expressed by I and 0. The symbol sym is 

defined as ( ) Tsym M M M  . 

II. DESCRIPTION OF UAV SYSTEMS 

A. Simulation Models 

The longitudinal equations of Unmanned Aerial 

Vehicles is considered here. The model usually is 

consisted of four states and its dynamics can be expressed 

as follows 
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where V is airspeed,  is angle of attack, q is pitch 

rate,  is pitch angle. Besides, m is quality of UAVs, 

X is aerodynamic force on the UAVs, g is the magnitude 

of gravity, M is outside the us moment, 
yyI  is the 

moment of inertia. Besides, tF  is the engine thrust and 
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where  is air density, n is engine speed, D is 

diameter of propeller, ( )FtC J  is dimensional coefficient 

of thrust, J is ratio of thrust coefficient. 

B. Problem State 

Since the mathematical model of UAVs systems have 

nonlinear characteristics, it is difficult to design a suitable 

controller and it needs to be linearized. Selecting the 

UAV system, we can get  

( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

 


 
            (3) 

where 
( ) [ , , , ]Tx t V q 

 as the states of the UAVs 

system,
( ) eu t 

as the controlled input, 
( )y t V

as the 

output. , , ,A B C D  are the coefficient matrices with 

appropriate dimensions and given as follows 
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Consider the VAVs nonlinear system with different 

exogenous disturbances 
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where 1( )y t is the measurement output, ( )d t and 1( )d t  

are two different types of disturbances. On the one hand, 

( )d t is supposed to be generated by an exogenous neural  

network model with adjustable expressed by 

     

 (5) 

where ( )z t  is the state of the neural network model. 

M and N are known coefficient matrices. W 

represents the optimal model parameter and ( ( ))z t is 

the designed known basis function of neural network. 

On the other hand, 1( )d t is assumed to be norm 

bounded and 
1( ) 1d t  is assumed to satisfy in order to 

simply the analysis process.  

III. DESIGN OF COMPOSITE CONTROLLER 

To guarantee the tracking performance of the UAVs 

system, we introduce a new state variable 

( ) : [ ( ), ( ) ]T T Tx t x t e d      (6) 

where the tracking error ( )e t  is defined as 

( ) ( ) de t y t y  , dy is the reference output. Then the 

augmented system can be established as   
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where  
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To realize the dynamical tracking for system output, 

the PI-type control input can be constructed as 

0
( ) ( ) ( )

t

PI P Iu t k x t K e d       (8) 

where matrices PK  and IK are controller gains to be 

determined later on.  

In order to estimate the model disturbance ( )d t , a 

nonlinear disturbance observer based on neural network 

is formulated as 

 

1
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where ˆ( )d t  and ˆ( )z t are the estimates of ( )d t  and 

( )z t , respectively. L  is the observer gain to be 

determined later. ( )v t is the designed auxiliary variable.  
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Define ˆ( ) ( ) ( )ze t z t z t  . 
* ˆW W W  . Comparing 

(5) and (9) yields 
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where ( ) is a sigmoid function and satisfies 
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By combining the estimates of disturbance with the 

PI-type control input, the composite controller is inferred 

as follows 

ˆ( ) ( ) ( )u t d t Kx t     P IK K K   (12) 

Substituting the composite controller (12) into the 

augmented system (7), the closed-loop system can be 

expressed by 

1 1( ) ( ) ( ) ( ) ( )z y dx t A BK x t BNe t B y B d t      (13) 

Furthermore, integrating the disturbance estimation 

error model (10) with the closed-loop system (13) ,we 

can get 
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IV. THEOREM PROOF 

Theorem : For the augmented system (14) and the 

known parameters 0, 1,2i i   , if there exist matrices 
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and 2 0P  , and 2R  satisfying 
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Further, the adjustable parameter ˆ ( )W t  is designed as 

follows 
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where   is a designed positive constant. Them the 

augmented system (14) under the composite controller 

(12) is stable and the tracking error satisfies 
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Proof : Select Lyapunov functions as 
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where 1  is a proper constant.  

On the other hand, based on the trajectories of (13), we 

can acquire 
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If both (15) and (16) hold, there exists a constant 

3 0  , according to 1P  and B , such that 

1 32 ( ) ( ) ( ) ( )z zx t PBNe t x t e t   (22) 

Based on Schur. complement formula, by 

pre-multiplying and post-multiplying  1

1 , ,diag Q I I  to 

both sides of (15), we can get  
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where 2 0   is a known proper constant. 

As a whole, a Lyapunov function for the augmented 

closed-loop system (14) is chosen as  
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T  is a positive definite matrix, so min ( ) 0T  . Thus, 

 ( ), ( ), 0zx t e t t  , if inequality  

2 1 2 2 2 2

min 1 2 1( ) ( ( ))dt y d t      holds. I t is noted for any 

( )x t  and ( )z t , it ca be verified that  
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where 0  is the initial value of t , which implies that 

the augmented system (14) is stable. Furthermore, we 
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assert from (27) that when t  , the variable 

0
( )

t

e d  must be bounded. As a result, we can get the 

dynamical tracking performance that is lim ( ) d
t

y t y


 . 

V. SIMULATION EXAMPLES 

In order to illustrate the effectiveness of the designed 

algorithm for UAV model, the following longitudinal 

UAV is implemented by using the Matlab simulation 

software.  

In the following, two different kinds of nonlinear kinds 

of nonlinear exogenous disturbance are described by 

Neural Network. Furthermore, multi-objective control 

requirements, including stability, tracking performance, 

disturbance observation and disturbance rejection. 

Case 1: The nonlinear disturbance can be described as 
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Meanwhile, by defining the parameters 1 2 1    

and solving LMIs (15), (16), the control gains  

 -0.9754 -0.2190 0.0870  0.2304PK  ,

-0.1086IK  ,
0 -0.0396 0.2010 0 0

0 0.0811 -0.0196 0 0
L
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  
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Supposed that the initial values of the state and the 

disturbance are taken to be  (0) 10,0.3,0.5,1
T

x  and 

 (0) 2 10
T

w    respectively. The designed tracking 

objective is selected as 10dy  . Fig. 1 displays the 

trajectories of harmonic disturbance with attenuation 

characteristics and its observation value that illustrates 

the tracking ability of our disturbance observer is 

satisfactory. When the composite controller is applied, 

the state responses of UAV systems are shown in Fig. 2. 

Fig. 3 is the trajectory of system output and the favorable 

dynamic tracking performance can be embodied.  

 

Figure 1. Disturbance 1d  and estimation value. 

 
Figure 2. Responses of UAV system state. 

 
Figure 3. Responses of output. 

Case 2: The another type of nonlinear disturbance can 

be described as 
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The control gains PK , IK  and observer gain L  are 

be found to be 

 -0.9831 -0.2207 0.0331 0.2076PK   

-0.1283IK  , 0 0.0190 0.1322 0 0

0 -0.0074 -0.0329 0 0
L

 
  
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The situation of the Case 2 is shown in from Fig. 4 to 

Fig. 6.  

 

Figure 4. Disturbance 2d  and estimation value. 
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Figure 5. Responses of UAV system state. 

 
Figure 6. Responses of output. 

VI. CONCLUSION 

In this paper, a novel Neural Network modeling-based 

anti-disturbance tracking control framework is proposed 

for UAVs system. Based on the Neural Network 

disturbance models, the composite controller is designed 

by combining the disturbance observer with PI–type 

control input. As a result, two LMI-based convex 

optimization design schemes are adopted to ensure the 

augmented closed-loop systems stable and convergence 

of the tracking error to zero. 
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