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Abstract— Obstacle avoidance methods guarantee the 

robot’s safety during the tracking of the planned path. 

Follow the Gap Method known (FGM) is a geometry-based 

obstacle avoidance method that continuously leads the robot 

to the goal point by selecting the largest gap existing around 

the robot. This approach calculates the heading angle by 

considering the distance to the closest obstacles, the angle to 

the goal, and the center of the gap. In this paper, a new 

procedure is developed to improve the gap selection in FGM, 

where the gaps are selected based on the prediction of gap 

changes during the time, considering the distance between 

the robot and obstacles in the future. In order to test the 

proposed methodology, Monte-Carlo simulations are used 

and the results are presented for comparison. The results 

demonstrate that the new procedure leads the robot to safer 

trajectories in comparison with classical FGM.  

 

Index Terms— obstacle avoidance, autonomous robots, path 

planning, dynamic obstacle 

I. INTRODUCTION 

The ability of robots to travel from the initial state 

toward the final state without any collisions using the 

sensorial data and environmental information is 

performed by path planning. Path planning algorithms are 

divided into two major classes: Global and local/reactive 

path planning [1], [2]. When the obstacles are solid and 

static, and the map of the environment is not changing 

and being updated dynamically, the global planning 

algorithms can calculate the travel trajectory on the 

collision-free spaces of the map even before the travel. In 

this scenario, the robot is able to reach the final state by 

just following the produced path. For path planning 

purposes, different methodologies like A* [3], Dijkstra 

[4], Rapidly Exploring Random Trees (RRTs) [5], RRT* 

[6], and cell decomposition methods [7] have been 

developed. However, the uncertainty and unavailability 

of environmental information can challenge the accuracy 

of such approaches in pathfinding processes. 

Local path planning algorithms can be useful when the 

environment is unknown and it contains dynamic 

obstacles or the motion of the robot contains uncertainty. 

In this class of path planning methods, the main goal is to 

avoid the robot from colliding with the detected obstacles 

while moving toward the goal state. In recent years, there 
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has been great improvement in developing local path 

planning algorithms. 

The earliest method in this category is the Bug 

algorithm, presented in [8]. In this algorithm, the robot 

moves directly toward the goal state and when facing an 

obstacle, the robot starts to moves around it until there is 

no obstacle to the goal state and then continues moving 

toward the goal. One of the other common obstacle 

avoidance methods is Artificial Potential Field (APF) [9]. 

Using the potential field concepts, the obstacles and the 

goal of this algorithm are respectively represented by 

repulsive artificial and attractive potentials. The attractive 

potential field generates a pulling force towards the goal 

and the repulsive potential fields coming from the 

obstacles generate pushing forces to push the robot away. 

Using these forces, the robot gets the ability to avoid 

obstacles while moving towards the goal state. 

Regardless of its simplicity, the main disadvantage of the 

APF method is when facing a local minimum [10]. The 

local minimum happens when the forces on the robot 

cancel each other, leading the robot to get stuck. To fix 

these issues in the APF method, appropriate solutions are 

presented in [11], [12]. Another method used for obstacle 

avoidance is the Virtual Force Field method (VFF) [13]. 

In this method, a two-dimensional Cartesian histogram 

grid is used to demonstrate the obstacles. Each cell in the 

histogram grid represents the chance of including an 

obstacle at that specific point. Then, the APF is applied to 

the histogram grid and consequently, the local minima 

problem remains in the VFF method. In another 

methodology called Vector Field Histogram (VFH) 

approach [14], the two-dimensional Cartesian histogram 

grid at the current location of the robot is reduced to a 

one-dimensional polar histogram. Later, VFH selects the 

field with the lowest polar obstacle density among all 

other polar fields and sets the heading angle of the robot 

according to the direction resulted from the chosen field. 

The methods discussed above are further improved in 

some other studies in the literature [15]. Dynamic 

Window Approach (DWA) [16] is one of the popular 

obstacle avoidance algorithms that considers the 

acceptable velocity sets for the robot. These acceptable 

velocity sets are appraised by maximizing an objective 

function. There are also some studies to improve the 

performance of DWA like [17]. 
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Follow the Gap Method known as (FGM) [18], is a 

geometrical-obstacle avoidance method that cares most 

about the safety. The FGM continuously guides the robot 

to the goal point by selecting the largest available gap 

around the robot. It calculates the heading angle by 

considering the distance to the closest obstacles and the 

angle to the goal and the center of the gap. Multiple 

improvements have been made for this method in the 

literature. Some of these methods try to fix the available 

issues like the Zigzag behavior and the trajectory length 

problem of the classic FGM like Improved Follow the 

Gap Method (FGM-I) [19]. Another version is called 

FGM-DWA [20] which uses the FGM’s safe heading 

angle and calculates the admissible velocities for the 

robot using the DWA algorithm. An alternative 

application of FGM for the overtaking maneuver is 

provided in [21]. The latest work which is called FGM-I2 

combines FGM-I with DWA as shown in [22]. 

In this paper, a novel procedure is presented for the 

gap selection step of the FGM methodology. The classic 

FGM selects the largest gap and no prediction is available 

for the gap changes. Additionally, this method only 

considers the existence of the obstacles using sensory 

data, and no other information about the obstacles is 

taken into account in this method. In the proposed novel 

FGM, follow the dynamic gap method (FDGM), the gaps 

are selected based on the prediction of gap changes 

during the time, considering a possible collision between 

the robot and the obstacles.  

The rest of the paper is structured as follows: Section 

II introduces the FGM. Section III explains the new 

procedure for the gap selection step of FGM. Simulation 

results are presented in section IV and the conclusions are 

presented in Section V. 

II. FOLLOW THE GAP METHOD 

FGM is a safety-geometry based local obstacle 

avoidance algorithm, because of its inherent 

characteristics FGM leads the robot to the safer 

trajectories, [19].  And the efficiency of this approach is 

validated in different studies [23]. Before the 

implementation of FGM, the robot is assumed to be 

circular and the obstacles are inflated with the robot's 

radius so that the robot can be considered as a point for 

the rest of the algorithm Implementing FGM consists of 

three main steps: 1) FGM calculates the gap arrays from 

the polar obstacle distance arrays coming from the 

sensory information and it finds the largest gap (gap 

selection step). 2) FGM calculates the gap center angle 3) 

the final heading angle calculation is performed 

concerning a safety factor named alfa, largest gap center 

angle, minimum distance to obstacles, and the goal angle 

using the Equation (1). 

 

𝜑𝑓𝑖𝑛𝑎𝑙 =

𝛼
𝑑𝑚𝑖𝑛

 𝜑𝑔𝑎𝑝−𝑐 + 𝜑𝑔𝑜𝑎𝑙 

𝛼
𝑑𝑚𝑖𝑛

+ 1
 (1) 

 

The Eq. (1) clearly shows that by getting the obstacles 

closer to the robot (dmin  0), FGM considers safety. 

The alfa coefficient shows the state of keeping a distance 

from the obstacles, which means that for the higher 

values of alfa, the robot gets distance from the obstacles 

and selects the center of the safe gap. On the other hand, 

lower values of alfa cause the robot not to afraid of the 

obstacles and make it move closer to the obstacles. Fig. 1. 

represents the robot-obstacle configuration, the gaps, 

midpoint of the largest gaps, the goal point, and the final 

heading angle. 

III. FOLLOW THE DYNAMIC GAP METHOD 

Although FGM has proved itself as one of the safest 

methods in obstacle avoidance, it does not use any smart 

procedure to select the gaps. This inherent characteristic 

of FGM causes it to be unsafe in some robot-obstacle 

configurations as illustrated in Fig. 2. In Fig. 2, it is seen 

that there is a dynamic obstacle moving upside down. 

The path generated by classical FGM results in a 

dangerous scenario where the obstacle and robot pass 

close to each other.  Selecting the gaps considering their 

current and future sizes along with the right prediction 

will enable the FGM to select a safer gap, shown as 

dashed in Fig. 2, which avoids possible unsafe 

trajectories. 

The classic FGM only calculates the final heading 

direction using the sensory information and it recursively 

uses these data to calculate the current gaps surrounding 

the robot. The approach is independent of the robot and 

the obstacles dynamics, so there is no calculation upon 

the velocity of mentioned parts of the environment. For 

this reason, the classic FGM sometimes faces unsafe 

trajectories as shown in Fig. 2. In the purposed approach, 

the robot uses the same sensory information to select the 

gaps considering the current and future size of the gaps 

and calculating the size change in the gaps. 

The new FDGM gap selection approach is a two-stage 

procedure, shown in Fig. 3. Calculation of the possible 

prediction time based on time to collision is explained in 

section III-A, and the prediction of gap changes by the 

desired time is discussed in part III-B. 

 

Figure 1. Robot-obstacle configuration, gaps, the midpoint of the largest 
gaps, goal point, and final heading angle. 
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Figure 2. Robot-obstacle configuration with a dynamic obstacle moving 

with velocity vector V_1 in the free-space. 

A. Calculation of the Possible Prediction Time Based on 

Time to Collision 

The procedure of FDGM is based on the prediction of 

gap changes during the prediction time. This possible 

prediction time for each gap can be obtained taking into 

account the robot’s velocity vector and how far the 

obstacles creating the gap borders are. Instead of 

selecting a fixed prediction time, the algorithm calculates 

the time at the point where the robot’s heading line 

intersects the gap baseline. This calculated time which is 

shown as 𝑡𝑝 in Fig. 4. is dependent on the velocity vector 

of the robot, and how far the robot is from the baseline of 

the gap. Its dynamic characteristics provide a better 

approach than the fixed prediction time approach. 

Using a constant velocity model of two-dimensional 

motion, and considering the velocity vector of the robot 

(�⃗� 𝑅), the coordinate of the possible intersection point (P) 

where the robot’s heading line crosses the gap baseline 

can be found using the Eqs. (2)-(3), where the robot’s and 

the ith obstacle’s current coordinates are considered as 

[𝑥𝑅
𝑦𝑅

], and [𝑥𝑜𝑏𝑠𝑖
𝑦𝑜𝑏𝑠𝑖

] respectively. 

 

 
𝑥𝑝 =

𝑦𝑜𝑏𝑠1 − 𝑦𝑅 + (tan 𝜃 . 𝑥𝑅 − 𝑠𝑙𝑜𝑝𝑒𝐺𝐵. 𝑥𝑜𝑏𝑠1)

tan 𝜃 − 𝑠𝑙𝑜𝑝𝑒𝐺𝐵

 (2) 

 

 
𝑦𝑝 = 𝑠𝑙𝑜𝑝𝑒𝐺𝐵 . 𝑥𝑝 + 𝑦𝑜𝑏𝑠1 − 𝑠𝑙𝑜𝑝𝑒𝐺𝐵 . 𝑥𝑜𝑏𝑠1 (3) 

( 𝑠𝑙𝑜𝑝𝑒𝐺𝐵 : The slope of the line between the Gap 

borders) 

The Euclidian distance between the robot’s current 

position and the point P can be obtained using the Eq. (4). 

 

 
𝑑𝑃 = √(𝑥𝑝 − 𝑥𝑅)2 + (𝑦𝑝 − 𝑦𝑅)2 (4) 

 

Finally, the prediction time (𝑡𝑝) can be found as shown 

in Eq. (5). 

 𝑡𝑝 =
𝑑 

�⃗� 𝑅
 (5) 

It’s noteworthy to consider that in the cases where 

there is no intersection, the classic FGM would be used. 

An example of this configuration can be found in Fig. 6. 

For the rest of the procedure, ∆𝑡 will be considered as 𝑡𝑝. 

Inflation the 

obstacles with the 

robot radius size

Calculation of gap�s 

center angle

Calculation of the 

Final heading angle

FGM

Gap Selection procedure

Predicting the gap 

change by the desired 

time and selecting the 

gap

Calculation of the 

possible prediction 

time

 

Figure 3. The new gap selection procedure 

 

Figure 4. Robot-obstacle configuration for calculation of possible 

prediction time (R: robot, Obs1:obstacle, Obs2: obstacle 2,
𝑡𝑝: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒). 

 

Figure 5. Example of the robot-obstacle configuration where there is no 
intersection. 

B. Predicting the Gap Change by the Desired Time 

The main step within the FDGM approach is 

predicting the gaps’ future size using the calculated time 

from step 1. 

Using the linear algebra concepts, the projected 

velocity vectors of the i’th gap border (𝑣 𝑝𝑖 , i=1,2) onto 

the gap baseline, shown in Fig. 6, can be found using the 

Eq. (6). 

 

𝑣 𝑝𝑖 =
�⃗� . �⃗� 𝑖

‖�⃗� ‖
2 �⃗�  (6) 

After obtaining the decomposed velocity vectors of the 

gap borders, the predicted size of the gap ( φ𝑃𝐺) 

represented in Fig. 8, can be calculated. The goal is to 

find the φ𝑃𝐺 in terms of measurable (𝑥𝑟𝑜𝑏𝑜𝑡 , 𝑦𝑟𝑜𝑏𝑜𝑡), d1, 

d2,  𝜃11 ,  𝜃21 ,  𝑉1  and 𝑉2  parameters coming from the 

robot’s odometry and sensory data, shown in Fig. 8.  d1 

and d2 are distances to the gap borders, 𝜃11 , 𝜃21  are 

angles between the gap borders and the segment h, which 
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is the perpendicular line to the line between gap borders. 

Considering the fact that h crosses from the robot, it can 

be calculated using the law of Sines, as shown in Eq. (7). 

 

 𝑠𝑖𝑛 (𝐺1)

ℎ
=

𝑠𝑖𝑛 (900)

𝑑1

→ ℎ = 𝑑1. 𝑠𝑖𝑛 (𝐺1) (7) 

 

where: G1 is one of the angles of the triangle (R, GB1, 

GB2) represented in Fig. 7.  

Considering the same triangle, the third side of the 

triangle (𝑑3) and the angles 𝐺1 and 𝐺2 can be calculated 

by using the law of Cosines, represented in Equations (8)-

(10). 

 

𝑑3 = √𝑑1
2 + 𝑑2

2 − 2𝑑1𝑑2. 𝑐𝑜𝑠 (𝐺0)  (8) 

 

Where: 𝐺0 is the current gap size 

 

Figure 6. Vector decomposition using the projection of vectors for the 

first gap border (i=1) (�⃗� 1: velocity vector of an obstacle creating the first 

gap border, 𝑣 𝑝1: the projected vector). 

 

 
𝐺1 = 𝑐𝑜𝑠−1 (

𝑑1
2 + 𝑑3

2 − 𝑑2
2

2. 𝑑1. 𝑑3
) (9) 

 
𝐺2 = 𝑐𝑜𝑠−1 (

𝑑2
2 + 𝑑3

2 − 𝑑1
2

2. 𝑑2. 𝑑3
) (10) 

 

The angles between the gap borders and the 

perpendicular segment h can be calculated as follows:  

 

 𝜃11 = 900 − 𝐺1 (11) 

 𝜃21 = 900 − 𝐺2 (12) 

 

By considering each side of the gap and writing the 

tangent formula for the sides, and using the constant 

velocity model of 2D motion for the robot-gap 

configuration, the displacement vectors of each gap from 

the point P (intersection of the perpendicular segment h 

and the segment pathing from the GB1 and GB2), as well 

as the displacement vectors from each side of the gap to 

their possible future position can be obtained as follows: 

 

 tan 𝜃𝑖1 =
𝑥𝑖1

ℎ
→ 𝑥𝑖1 = ℎ. tan 𝜃𝑖1 (13) 

 tan 𝜃𝑖2 =
𝑥𝑖2

ℎ
 → 𝑥𝑖2 = ℎ. tan 𝜃𝑖2 (14) 

 |∆𝑥𝑖| =  |𝑥𝑖2 − 𝑥𝑖1|     , 𝑖 = 1,2 (15) 

   
Subtracting the Eq. (13) from Eq. (14), the following 

relationship can be obtained: 

 

 ℎ. (tan 𝜃𝑖2 − tan 𝜃𝑖1) = ∆𝑥𝑖  (16) 

 

Considering the constant velocity model, Eq. (17), and 

replacing the ∆𝑥𝑖 with the Eq. (16), the Eq. (18) can be 

obtained: 

 ∆𝑥𝑖 = 𝑣𝑝𝑖 . ∆𝑡, ∆𝑡 =  𝑡𝑝 (17) 

 ℎ. (tan 𝜃𝑖2 − tan 𝜃𝑖1) = 𝑣𝑝𝑖 . ∆𝑡 (18) 

 

Using Eq. (18), the 𝜃𝑖2 can be found as follows: 

 

 
𝜃𝑖2 = tan−1 (

𝑣𝑝𝑖  .  ∆𝑡

ℎ
+ tan 𝜃𝑖1) (19) 

 

Finally, using Eq. (19), the φ𝑃𝐺  can be calculated as 

follows: 

 

φ𝑃𝐺 =  ∑𝜃𝑖2

2

𝑖=1

 (20) 

 

Figure 7. Robot-gap configuration for calculating the future gap changes. 

The FDGM algorithm selects the largest predicted gap 

along with the other predicted gaps and passes it to the 

FGM. The simulation results of two different robot-

obstacle configurations containing two dynamic obstacles 

and multiple static obstacles are illustrated in Fig 8. As 

shown in Fig. 8-a, the traveled paths for both FGM and 

FDGM algorithms from the starting time until time t1 are 

the same. 

At time t1, the robot detects the second dynamic 

obstacle (DO2) which is moving downside up and the 

FGM selects the current largest available gap, but the 

FDGM calculates the gap’s future size by considering 

prediction time and selects the largest predicted gap along 

with other predicted gaps, which consequently results in 

different trajectories for the mentioned algorithms in the 

rest of the travel. The result of this smart gap selection 

can be seen at the time t2, where using the FGM causes 

the robot to be close to the DO2 while under the FDGM, 

the robot is in a safer path. 

In Fig. 8-b, at time t1, the FGM and FDGM select 

different gaps and the same consequences happen for the 

robot, where it gets too close to the DO2 with FGM, 

leading to an unsafe path. 
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IV. SIMULATION RESULTS 

In order to test the effectiveness of the proposed 

algorithm, a simulation environment is developed in 

Matlab® and the kinematic model of a differential drive 

robot equipped with a proportional heading angle 

controller is used to conduct the tests. The mentioned 

controller, shown in Eq. (21), drives the robot at constant 

linear velocity 0.15 m/s and the angular velocity, which is 

proportional to the angular difference between the robot’s 

current heading angle, 𝜃𝑟𝑜𝑏𝑜𝑡  and the FGM’s final 

heading angle, 𝜑𝑓𝑖𝑛𝑎𝑙 . 

 

 

𝑉 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡                  
𝑤 = 𝐾𝑝(𝜑𝑓𝑖𝑛𝑎𝑙 − 𝜃𝑟𝑜𝑏𝑜𝑡)

 (21) 

To assess the efficiency of the proposed algorithm, 300 

Monte Carlo simulations are performed for FGM and 

FDGM, where the coordinate of obstacles are specified 

randomly. A LIDAR with a total 180˚ field of view (FOV) 

is used in the simulations and the total area of the 

environment is selected as 7m x 14m, and the initial and 

the goal coordinates are chosen as [11.8-13] and [16.5-

13], respectively. 

 
(a) 

 
 (b) 

Figure 8. Comparison of the classic FGM and FDGM 

The results are compared in terms of obstacle 

avoidance safety and length of the path. The metric used 

for the obstacle avoidance safety expressed in Eq. (22), is 

the same as used in [19], [20], and [24]. 

 

 

𝑓(𝑡) =  {

1

𝑑𝑚𝑖𝑛

−
1

𝑑0

, 𝑓𝑜𝑟    𝑑𝑚𝑖𝑛 < 𝑑0

0,                          𝑓𝑜𝑟    𝑑𝑚𝑖𝑛 ≥ 𝑑0

 (22) 

   
where,  𝑑𝑚𝑖𝑛  is the closest distance between the robot and 

the obstacles, and the scalar 𝑑0 denotes the distance to an 

obstacle that imposes no danger for the robot during the 

travel. It is noteworthy that this scalar is set considering 

the environment and the robot dynamics. This safety 

metric is a function which is inversely proportional to the 

distance to the obstacle, 𝑑𝑚𝑖𝑛 . So, comparing multiple 

scenarios, smaller values of safety-metric means it is 

safer. 

The pth norm of any f(t) function can be calculated as: 

 

 ‖𝑓‖𝑝 = (|𝑓(𝑡)|𝑝𝑑𝑡)1/𝑝 (23) 

In this study, the infinity norm (p = ∞) of the obstacle 

avoidance safety metric is used to compare the most 

dangerous parts of each scenario for FGM and FDGM. 

Simulations are implemented to test the FGM and FDGM 

in the same environments using the 300 Monte Carlo 
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simulations in a computer with 16 GB of RAM, and an i7 

4.6 GHz processor, using the Ubuntu 16.04 operating 

system. The average values of the obstacle avoidance 

safety metric and traveled distance values in the 

trajectories where the gap selection is different in FGM 

and FDGM are presented in Table I (α=40, 𝑑0=2m). 

TABLE I. MONTE CARLO SIMULATIONS RESULT 

 Average safety metric 
Average traveled distance  

(m) 

FGM 0.0271 5.117 

FDGM 0.0242 5.015 

 

According to Table I, FDGM is 10.7% safer than the 

FGM, while the average travel distance values are almost 

the same. And this shows that the newly proposed 

method improves the safety aspect of the classic FGM 

without extending the total path. 

V. CONCLUSION 

This paper presents a novel approach to improve the 

gap selection procedure in classic FGM. The proposed 

model improves the gap selection quality of the classic 

FGM by selecting the gaps based on the prediction of the 

gap changes during the time. The proposed procedure is 

tested using the 300 Monto-Carlo simulations and the 

results demonstrate that the proposed model leads the 

robot to safer trajectories in comparison with the classic 

FGM. The next phase for this study includes 

implementing the FDGM on a physical platform and 

improving the prediction time by selecting more complex 

velocity models. 
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