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Abstract—This paper aims to solve the tracking problem and 

optimality effectiveness of an Unmanned Aerial Vehicle 

(UAV) by model-free data Reinforcement Learning (RL) 

algorithms in both sub-systems of attitude and position. First, 

a cascade UAV model structure is given to establish the 

control system diagram with two corresponding attitude and 

position control loops. Second, based on the computation of 

the time derivative of the Bellman function by two different 

methods, the combination of the Bellman function and the 

optimal control is adopted to maintain the control signal as 

time converges to infinity with the addition of a discount 

factor. Third, according to off policy technique, the two 

proposed model-free RL algorithms are designed for attitude 

and position sub-systems in UAV control structure with a 

discount factor, respectively. In particular, the designed 

algorithms not only solve the trajectory tracking problem but 

also guarantee the optimality performance. Finally, an 

illustrative system is used to verify the performance of the 

proposed model-free data RL algorithms in the UAV control 

system.    

 

Keywords—data Reinforcement Learning (RL), Unmanned 

Aerial Vehicles (UAVs), quadrotor, Approximate/Adaptive 

Dynamic Programming (ADP), model-free based control 

 

I. INTRODUCTION 

The tracking control problem of Unmanned Aerial 

Vehicles (UAVs) has been extensively studied in many 

real-world applications, such as cargo transportation, 

precise agriculture, military, etc. [1−8]. In practice, the 

position and attitude dynamics tend to be uncertain and 

perturbed, which necessitates the design of nonlinear 

controllers with strong robustness against dynamic 

uncertainties and external disturbances [4]. Several 

classical nonlinear control methods studied for UAVs are 

nowadays available in the literature, such as adaptive 

dynamic Sliding Mode Control (SMC) [4], finite-time 

SMC [9], etc.  However, it should be noted that the back-

stepping technique laws have existed in almost all 

conventional nonlinear control designs [4, 9]. The majority 

of these methods is to handle the tracking performance of 

the entire UAV system while each sub-system guarantees 

stability. Therefore, the disadvantages of the 

 
Manuscript received January 24, 2024; revised March 11, 2024; accepted 

March 22, 2024; published September 6, 2024. 

aforementioned nonlinear control methods can be known 

not only in choosing the Lyapunov function candidate but 

also requiring complex computation. Moreover, the 

optimality problem has not been discussed in the 

unification with the tracking problem [4, 9].   

Implementing the optimal control scheme for robotic 

systems, requires the approximate algorithms to solve 

Hamilton-Jacobi-Bellman (HJB) or Ricatti equations, 

which are difficult to directly solve by analytical method. 

The development of Reinforcement Learning Control 

(RLC) and Approximate/Adaptive Dynamic Programming 

(ADP) theories have significant implications for 

developing optimal control problems in robotic control 

systems [10, 11]. In particular, RLC is approached by 

Actor/Critic consideration [10, 11], wherein, through 

Neural Networks (NN) approximation and optimization 

solution, the learning algorithm was given to satisfy not 

only optimality effectiveness but also tracking problem. 

Nevertheless, the external disturbance and dynamic 

uncertainties were independently handled with the RL 

algorithm in [10, 11], which is considered the model-based 

method. Unlike the simultaneous learning in Actor/Critic 

in [10, 11], the work in [12−14] developed sequential 

training by Policy Iteration (PI) and Value Iteration (VI) 

for non-affine discrete-time systems and affine 

continuous-time systems, respectively. The convergence 

to optimal control and Bellman function is studied by 

considering the decreasing sequence to be limited. The 

data-driven PI in [14] was implemented with three 

successive phases for seeking Lipschitz admissible control, 

and the optimal control policy. Moreover, the relation 

between PI and VI approaches was clarified in [12] and the 

extension of output PI-VI ADP strategy was given with 

state reconstruction in [15−18]. On the other hand, a data-

driven learning algorithm was utilized to seek the output 

ADP for perturbed linear systems with exo-system based 

on the sampling data, which was collected from two virtual 

systems [15]. It is different from the On-Policy technique 

considering the computation under the control signal being 

the control policy [10−15], the off-policy method was 

developed for model-free H infinity with the addition of an 

observer [16]. An approach to handling model-free 
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requirements was introduced by using data-driven 

Actor/Critic Q learning for continuous linear systems [19]. 

On the other hand, to maintain the control signal as the 

time comes to infinity, a model-free Q-learning algorithm 

was applied for linear discrete-time systems with a 

discount factor in the cost function [20]. Furthermore, the 

constrained optimal problem was addressed by integrating 

the Barrier function into the inverse optimal control 

problem [21].  

Recently, particularly relevant for this paper, a data RL 

control strategy for a UAV was proposed in [1] to achieve 

the unification of the optimality problem and trajectory 

tracking control. An appealing feature of data RL control 

is that the proposed control is developed for complete 

dynamic uncertainties [1]. Moreover, the fault tolerant 

control problem was improved in the data RL 

algorithm [2]. However, the data RL technique was only 

developed for an attitude sub-system of UAV, and the cost 

function was mentioned but without a discount  

factor [1, 2, 6]. Additionally, a model-free RL control was 

also investigated for only an attitude sub-system of UAV 

to address the actuator saturation by developing an 

additional saturation function and saturated sliding 

surface [3]. On the other hand, there have been RL 

strategies for multiple UAVs, such as for a position sub-

system [5], and an attitude sub-system [8]. Generally, the 

disadvantages of the recent references [1, 2, 10, 11] are to 

acquire the model parameters and to set the cost function 

being infinity, which means that the optimal control 

consideration is not satisfied. Thus, it is necessary to 

consider the addition of a discount factor in the cost 

function to develop the optimal control for UAV systems 

(see Table I). 

TABLE I.  THE PHYSICAL MEANINGS OF NOTATIONS 

Notation Meaning 

i
 The inertial frame 

b
 The Body-fixed frame 

j  a vector   expressed in ,j
 where   ,j i b=  

i

ne  
a vector 1n   with the 

thi  element equal to 1 and 0 at 

the others 

,0m n  a  m n  matrix with all 0 elements 

i

bR  The rotation matrix denotes a rotation from 
b
 to 

i
 

* *,c s  cos (*), sin (*) 

1 2

3 4

, ,

,

 

 
 The velocities of the four rotors in Fig. 1 

l  Distance between center of mass and rotor (Fig. 1) 

m  Mass of the quadrotor (Fig. 1) 

 

The rest of the paper is structured as follows. In 

Section II, we briefly introduce the position and attitude 

models of UAVs and present a control design objective. In 

Section III, we further present the RLC for nonlinear 

systems with a discount factor, and two model-free RL 

algorithms are developed for attitude and position sub-

systems. In Section IV, the proposed algorithms are 

illustrated with a UAV control system to demonstrate their 

performance. This article concludes with a summary of the 

findings in Section V.   

II. PRELIMINARIES AND PROBLEM STATEMENTS 

Fig. 1 depicts the kinematics and dynamics of a 

quadrotor with two coordinate frames to be considered as 

a Body-fixed frame 
b

and a NED inertial frame
i
.  

 

 

Fig. 1. Quadrotor model in NED coordinate. 

According to Ref. [1], the positions vector of the 

quadrotor and the orientation angels are defined under the 

NED inertial frame, the Euler angles Roll-Pitch-Yaw, 

respectively. It should be noted that the Euler angles are 

bounded such that / 2 / 2  −   , / 2 / 2  −    and

  −   . On the other hand, the Euler angles vector   

is utilized to represent the following rotation matrix: 

  

c c c s s

R s s c c s s s s c c s c

c s c s s c s s s c c c

    

           

           

 
 


−

= −

+ − 

+ 




         (1)  

In Fig. 1, the angular velocities vector of the quadrotor 

concerning coordinate 
i
is given by ( , , )Tp q r = , which is 

expressed about Euler angles rate ( , , )T   =  as follows: 

1 0

0

0

s

c s c

s c c



  

  



 −
 

=  
 − 

  (2) 

According to [1], the dynamics model of a quadrotor 

can be depicted as: 

3 3

3 3 ;

( ) .

mr mgRe fRe

J J T  

+ =

+  =
          (3) 

where f   indicates the total of lift forces in the frame 

i
by 1 2 3 4f f f f f= + + + ,  and is the torque in a frame 

b
  

(see Fig. 1). Their relationship is described in Eq. (4): 
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2

2

2

3

2

4

0 0

0 0

f f f f f f

x

y

z z z z z z

f k k k k k u

T lk lk lk u

T lk lk lk u

T k k k k k u

   

   











      
      

−       = =
      −
            − −      

    (4) 

with l  to be the distance between the center of mass and 

the rotor and , ,f zk k k  are constant dynamics coefficients 

of force and torque, respectively. Similarly, we define and
2 2

2 4xu  = − , 
2 2

1 3yu  = − + ,
2 2 2 2

1 2 3 4zu    = − + − + . 

Consequently, from Eqs. (2) and (3), the dynamics 

equations can be written as:     

3 3

3 3

( , )

                                          (5)

                                            (6)

mr fRe mge

J T C
 

= −

 = − 

             (5) 

 

3 3

3 3

( , )

                                          (5)

                                            (6)

mr fRe mge

J T C
 

= −

 = −                    (6) 

 

Fig. 2. Quadrotor control schematic. 

The objective is to seek an optimal controller for 

perturbed quadrotors to satisfy not only the tracking 

problem with a sophisticated trajectory but also minimize 

the discount factor-based cost function Eq. (8). Moreover, 

it should be noted that in the proposed control system 

(Fig. 2), the optimal control design approach is 

implemented for both sub-systems in Eqs. (5) and (6) by 

observing system states with no prior knowledge of the 

object.  

Remark 1. It is different from the classical trajectory 

tracking control objective to be solved by nonlinear control 

using Lyapunov stability theory in [9], the control 

objective in this article requires not only the trajectory 

tracking effectiveness but also the minimization of the 

given cost function. Moreover, the optimal control 

problem is necessary to satisfy both sub-systems (Fig. 2), 

which is unified with trajectory tracking requirements. 

III. RL CONTROL DESIGNS  

In this section, a novel control structure illustrated in 

Fig. 2 is proposed with two RL-based control loops to be 

Position Controller and Attitude Controller after 

separating the Quadrotor into two sub-systems as 

mentioned in Eqs. (5) and (6). The Position Controller is 

considered as an outer-loop controller to obtain the desired 

trajectory and its outputs are the desired Euler angles

( , , )des des des T   . The Attitude Controller has a duty to 

track the desired Euler angles. The two RL-based 

controllers are investigated under the influence of 

exponential function and data collection to satisfy the 

complete uncertainty. 

A. RL Control Design with Discount Factor 

The RL technique is investigated for the following 

affine system:   

( ) ( ) ( ).
d

F G u t
dt

  = +     (7) 

 

The optimal control signal is designed to guarantee the 

minimization of the following infinite horizon cost 

function with a positive discount factor 0  . 

 ( ) ( )( ), ( ) ( ( ), ( )) ,s t

t
V t u t e U s u s ds 


− −=    (8) 

 

where ( )( , ( )) ( ) ( )
TTU u s Q u s Ru s   + , Q  and 

n nR   are two positive-definite symmetric constant 

matrices. It can be seen that the addition of discount factor 
in cost function Eq. (8) leads to the existence of input 

signals vector as time converges to infinity.  

Hence, the admissible control policy is not necessary to 

discuss as previous references [11]. The constraint set of 

control signals is only necessary to satisfy the finite cost 

function Eq. (8). Thanks to the autonomous property of the 

affine model Eq. (7), the Bellman function obtained from 

Dynamic programming is the following static function: 

( )
( ) ( )

( )( )*

( )
( ) min ( ),

u t U
V t V t u


  


=      (9) 

The modified Hamiltonian function associated with the 

discount factor is established by considering two different 

computation methods of the time derivative of the Bellman 

function ( )* ( )V t . First, it is computed directly as: 

( ) ( )
* *

* *( ) ) ) . ( (
d V d V

V t F G u
dt dt


  

 

 
= = +

        (10) 

 

where is the optimal control signal. 

The second method to compute the time derivative of 

the Bellman function ( )* ( )V t  is developed in the view of 

the dynamic programming principle with the following 

static Bellman function Eq. (9): 

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )

* ( ) *

( ( )) *

( ) * *

( ) ,

                   ,

              , ( ) .

t

s t

t

s t

t

t

s t

t

V t e U s u s ds

e e U s u s ds

e U s u s ds e V t



 

 

 



 

+

− −



−  − − +

+

+

− − − 

=

+

= + + 







(11) 
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Therefore, Eq. (11) implies that: 

( ) ( )

( ) ( )( )
( )

( )

* *

( ) * *

( ) ( ( )

11
, ( ) .

t

s t

t

V t V t

e
e U s u s ds V t





 

 

− +

− −

− + 
=



−
+ + 

 
    (12) 

Observing Eqs. (12) and (10) as it implies that the static 

Bellman function ( )* ( )V t  can be computed from the 

optimal control signal ( )*u t  after solving the following 

partial derivative equation: 

( ) ( )( ) ( ) ( )
*

* * *, ( ( ) ( ) ( ) 0.
V

U t u t V t F G u    



− + + =

     (13) 

To obtain the optimal control signal ( )*u t  from the 

Bellman function ( )* ( ( )V t , based on the Dynamic 

Programming principle, it yields the following 

optimization problem: 

( )
( ) ( )

( ) ( )* *( ) min , ( ) ( ( )

t

u U
t

V t U u t ds e V t


  

+

− 


= + + 

 
  
 
     (14) 

As (14) implies the modified optimization problem is: 

( ) ( )
( ) ( ) ( )( )

*
*

( )
min , ( ) ( ) ( ) 0. [ ]

u t U

V
U u t V F G u t


    




− + + =

      (15) 

Denoting the modified Hamiltonian function to be 

associated with a discount factor 0   as 

( )

( )

( , ( ), , ) ( ) ? )

           ( ) ( ) ( ) ( ) ( )

TT

T

H u t V V Q u t Ru t

V V F G u

  

     

 = +

− +  +
  (16) 

where it implies that the optimal control is then achieved 

from Eq. (15) as 

 

( )* *

u ( )

1 *

( ) argmin , ( ), ( )

1
         ( ) ( )

2

T

u H u t V

R G V

  

 

 

−

 = 
 

= − 
             (17) 

Moreover, substituting the optimal control 
*( )u   

Eq. (17) into Eq. (15) obtains the Partial Derivative 

Equation (PDE) as 

* * * *

* 1 *

* *

( , , , )

1
          ( ) ( ) ( ) ( )

4

         ( ) ( ) ( ) 0.

T

T T

T

H u V V Q

V G R G V

V V F

  

   

   

−

 =

−  

− +  =

      (18) 

 

However, it is impossible to analytically solve the PDE 

Eq. (18) to find the Bellman function from the optimal 

control signal
*( )u  . Hence, the data-driven algorithm is 

mobilized to seek the optimal control signal in Sections B 

and C.    

Remark 2. The discount factor is added to the cost 

function Eq. (8) for keeping the control signals as the 

tracking problem is satisfied. However, it is necessary to 

address the impact of the term “lies in Eq. (18), which 

establishes some modifications in actor/critic-based RL 

control design Section III.B and C. 

B. Data-Driven PI Position Controller 

In this section, after achieving the separation of the 

quadrotor model, the control design of each sub-system is 

developed by the data-driven RL technique as follows. The 

first step is to rewrite the position sub-system described in 

Eq. (5): 

1 3 3

3 3

1

                                                                                  (19)

                                                                                      

f f

f r

r m k u Re ge

m k u

−

−

= −

=           (20)

                           (19) 
1 3 3

3 3

1

                                                                                  (19)

                                                                                      

f f

f r

r m k u Re ge

m k u

−

−

= −

=           (20)                            (20) 

where the term can be known as an off-set element and 

eliminated by determining a bias 
0

1 3

3r fu mk ge−= to lift 

the quadrotor off the ground. To develop the RL technique 

as described in Section A, we employ the states vector
6( , , , , , )T

r n n e e d dx r r r r r r=  . Thus, the position sub-system 

Eq. (19) can be transformed as: 

r r r r rx A x B u= +                      (21) 

where 
6 6 1

2,1 2( , , ) ,$ (0 )r r r r rA diag a a a a e=  =  and

1 2 4 6

6 6 6( , , )r fB m k e e e−= . Assume that, the desired trajectory 

is bounded and is the Lipschitz function. On the other hand, 

defining the reference ( , , , , , )des des des des des des des T

r n n e e d dx r r r r r r=  

6  and ( )des

rx t can be completely represented as

( ) ( )des des

r rd rx t A x t= . Define
des

r r re x x= − , 

Eq. (21) can be written as: 

6,6 6,30 0

r r rd rr

r r rdes

rdr

A A A Be
X X u

Ax

−    
= = +    

     
     (22) 

The tracking performance function is chosen as: 

( )( ( )) ( ) ( ) ) ( ) ([ ]t T T

r r r p r r r r
t

V X t e X Q X u R u d      


− −=  +  (23) 

where 
6,6

6,6 6,6

0

0 0

er

r

Q
Q

 
=  

 
with and to be both positive 

symmetric definite matrices. Note that, the term is added 

to penalize both tracking error cost and input control 

energy cost. It is easy to determine that although the 

desired trajectory is bounded, the control input does not 

converge to as comes to infinity. According to the work in 

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 5, 2024

498



 

Section III.A, the Position Controller can be deployed as 

described in the following Algorithm 1: 

Algorithm 1 (Fig. 3): Data-driven PI Position Control:  

Step 1: (Initialization): Starting the stabilizing control 

policy and the disturbance term to satisfy the PE condition. 

Implementing the data collection and establishing the 

threshold p   

Step 2: (Policy Evaluation): For each control signal

( )i

p pu X , solve simultaneously the  
1( )i

p pV X+
 and 

1( )i

p pu X+
 

by the following equation:  

( )( )
( )

( ) ( )

1 1

1 1

1 0

( ( )) ( ( ))

( ) ( ) ( ( )) ( ( ))

( ( )) 2 ( ( )) ( ( ))

2 ( ( )) ( )

i i

p p p p

t t T
T i i

p p p p p p p p
t

t t t t T
i i i

p p p p p p p
t t

t t T
i

p p p p pe
t

V X t t V X t

X Q X u X R u X d

V X d u X R u X d

u X R u u d



 





    

     

  

+ +

+

+ +
+ +

+
+

+ − =

− +

+ +

− +



 



 (24) 

Step 3: (Policy Improvement): Update the control 

policy 
1( ) ( ), ( 1)i i

p p p pu X u X i i+= → +   and come back to Step 2 

until 
1i i

p p pu u+ − ‖ ‖  

After obtaining the control signal in the control 

structure (Fig. 1), the reference of the attitude control 

scheme can be obtained ( , , )r rn re rdu u u u= . According to  

Ref. [1], the desired yaw angle 
des  can be chosen as zero 

and ,des des   can be easily solved as follows:  

0

0

2 2 2( ) 0

( ) ( )
( )

( ) ( )
(

, ,

,

)

des

rp rn re rd r

des des
des rn re

rp

des des
des rn re

rd r

u u u u u

u sin u cos
arcsin

u

u cos u sin
arctan

u u



 


 


= + + + =

−
=

+
=

+

    (25) 

C. Data-driven PI Attitude Controller  

After the desired attitudes are obtained from Eq. (25), 

the objective of the attitude controller in Fig. 1 is to design 

the input signals for satisfying the optimal control problem. 

The model in Eq. (6) can be written as: 

1 1

( , )
J T J C− −

 
 = −                   (26) 

Based on the states vector [ , , , , , ]Tx       = , the 

attitude control scheme (Fig. 1) is similar to the Position 

Controller in subsection A. According to the model in Eq. 

(6), the attitude model can be rewritten as: 

6,6 6,30 0

d

d d

dd

F F F Ge
X X u

Fx

   

  



−    
= = +    

     
     (27) 

It implies that the attitude control design can be 

developed in the following algorithm: 

Algorithm 2 (Fig. 3): Data-driven PI Position Control: 

Step 1 (Initialization): Choosing the stabilizing control 

policy and the disturbance term ( )eu t , the threshold to 

satisfy the PE condition, and collecting the data.  

Step 2 (Policy Evaluation): For each control signal

( )iu X  , solve simultaneously the  
1( )iV X+

   and 
1( )iu X+

   

by the following equation:  

 

( )( )
( )

( ) ( )

1 1

1 1

1 0

( ( )) ( ( ))

( ) ( ) ( ( )) ( ( ))

( ( )) 2 ( ( )) ( ( ))

2 ( ( )) ( )

i i

t t T
T i i

t

t t t t T
i i i

t t

t t T
i

e
t

V X t t V X t

X Q X u X R u X d

V X d u X R u X d

u X R u u d



 





    

     

  

+ +

   

+

       

+ +
+ +

      

+
+

    

+ − =

− +

+ +

− +



 



  

(28) 

 

Step 3 (Policy Improvement): Update the control 

policy 
1( ) ( ), ( 1)i iu X u X i i+

   = → +   and come back to Step 2 

until 
1i i

p p pu u+ − ‖ ‖ . 

 

Start

Initialization:

Choosing

0 ( ), ( ),eu X u t   

Policy Evaluation

1 1( ), ( )i iV X u X+ +

   

Solving simultaneously the

by the equation (24) or (28)

Policy Improvement

Update the control policy

1( ) ( ), ( 1)i iu X u X i i+

   = → +

1i i

p p pu u+ − ‖ ‖

Stop

Yes

No

 

Fig. 3. The flowchart of Algorithm 1 or 2. 

On the other hand, it is worth emphasizing that the 

training time is considered from the initial time to the time 

of obtaining the optimal controllers by RL Algorithms 1 

and 2. Furthermore, due to the dynamic uncertainties in 

models in Eq. (5) and (6), the proposed RL Algorithms 1 

and 2 are developed by data collection of input, and state 

signals in the practical system, which are employed to 

solve the Eqs. (24)−(28). However, it is worth emphasizing 

that the existence of root in Eqs. (24)−(28), (Algorithm 1), 

(Algorithm 2) requires the Persistence of Excitation (PE) 

condition as shown in [10, 11].   
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IV. SIMULATION RESULTS  

Consider a perturbed quadrotor with the parameters as 

follows:
22.0( ), 1( )wm kg k Ns= = , and input 

disturbances in force are ( )0.1sin ( )t Nm = .   

The desired trajectory is a spiral trajectory: 

( ) [2 ( ), 2 ( ), 0.8 ]des Tr t sin at cos at t= where 0.5a = . 

Initially, at the stage of collecting data, two PD 

(Proportion- Derivative) controllers are implemented for 

both position and attitude. These non-optimal controllers 

are tuned manually to keep the quadrotors stable with the 

position and attitude errors illustrated in Figs. 4 and 5. 

Additionally, to guarantee the PE conditions, the noises 

with and 

500

1

0.002 ( )e m

m

u sin w t

=

=   ( mw  is a 

frequency chosen in range randomly), are added to the 

position and attitude controllers respectively. The next 

stage is to apply the two algorithms in the previous 

sections after obtaining data. The algorithms’ parameters 

are chosen as:  

6 3 6

3

100 , , 100 ,

, 0.01, 0.01

e p e

step

Q I R I Q I

R I T





= = =

= = = . 

The activation functions of the critic and actor neural 

networks are second-order polynomials and first-order 

polynomials respectively. It can be seen that the 

convergence of the weights in Algorithms 1 and 2 is shown 

in Fig. 4. Moreover, it leads to the tracking problem is 

satisfied as shown in Fig. 5. 

 

Fig. 4. The weight convergence of the learning stage. 

On the other hand, Fig. 6 shows the comparisons 

between the evolutions of tracking error depending on the 

discount factor. It can be seen that if the discount factor 

increases then the convergence speed of tracking error 

increases. However, it follows that the fluctuation will 

increase as the discount factor increases (Fig. 6). 

Additionally, unlike the classical controllers like Fuzzy 

and PID only considering the position control problem, the 

proposed Algorithms 1 and 2 develop not only the 

trajectory tracking control performance but also model-

free RL strategy in the presence of dynamic uncertainties. 

Moreover, it can be seen that the advantage of these 

proposed methods is the extension of adding the discount 

factor and two RL algorithms, which have not been 

considered in the recent reference [1, 2, 10, 11].       

 

Fig. 5. The tracking of orientation angles. 

 

Fig. 6. The tracking error depends on the discount factor. 

V. CONCLUSION  

This paper has designed the model-free data RL 

strategies for both attitude and position sub-systems in 

cascade UAV control structure to achieve the unification 

of trajectory tracking problem and optimality purpose. The 

main idea is to establish the Off-Policy RL algorithm with 

a discount factor to satisfy the existence of a control signal 

as time comes to infinity and obtain the model-free 

consideration without UAV model knowledge. Moreover, 

data collection and computation techniques are considered 

to achieve simultaneously the optimal value function and 

optimal control policy. Finally, an illustrative system is 

employed to validate the effectiveness of the proposed 
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model-free data RL algorithms in the UAV control system. 

In future work, we will consider extending the proposed 

strategies to the formation control problem of multiple 

UAVs.  
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