
A Virtual Mecanum Wheeled Robot ROS 

Simulator for Multi-view and Self-Following 

Motion Capture   
 

Le Zhou, Nate Lannan, Cale England, and Guoliang Fan * 

School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, USA 

Email: le.zhou@okstate.edu (L.Z.); nate.lannan@okstate.edu (N.L.); cale.england@okstate.edu (C.E.);  

guoliang.fan@okstate.edu (G.F.) 

*Corresponding author 

 

 

 
Abstract—Motion capture (Mocap) on the go based on a 

mobile platform is valuable for clinical studies and 

rehabilitation. For multi-view gait analysis, Mecanum 

wheeled robots offer advantages over traditional differential 

drive robots. However, control issues in multi-view human 

tracking using Mecanum robots remain unexplored and lack 

a suitable virtual environment. This paper introduces a 

virtual Robot Operating System (ROS) environment with a 

Gazebo simulator as a research tool for multi-view human 

tracking on a Mecanum wheeled robot. The simulation 

incorporates a Proportional–Integral–Derivative (PID) 

controller and Kalman filter to maintain expected positional 

distance and relative viewing angles to the target. Our case 

study presents a quantitative evaluation of results obtained 

from the virtual environment for two specific tracking modes 

on a Mecanum wheeled robot: back-view following and side-

view following with and without Kalman filtering. By 

optimizing the system, we decreased the distance error in 

backward following from 0.22 m to 0.12 m, and the angle 

error from 12.2° to 5.3°. Similarly, for side following, the 

distance error decreased from 0.32 m to 0.14 m, and the angle 

error reduced from 13.4° to 6.2°. These experimental results 

demonstrate that our approach enhances the accuracy of 

both tracking methods by over 50%. This work provides a 

necessary steppingstone for the development of human-

tracking Mecanum wheeled robots for use in a clinical setting, 

providing a virtual environment for algorithmic development 

thereby eliminating wear on the hardware to be used in the 

clinical setting.   

  

 

 

 

 

I. INTRODUCTION 

Advancements in robotics have revolutionized various 

industries, and the field of biomedicine is no exception. 

One intriguing application is the development of human-

following robots, designed to autonomously track and 

assist individuals within healthcare settings. This 

emerging technology holds tremendous promise, offering 

 
Manuscript received February 3, 2024; revised April 8, 2024; accepted 

May 8, 2024; published October 8, 2024. 

the potential to enhance patient care, streamline medical 

processes, and improve the overall efficiency of healthcare 

facilities. By seamlessly integrating robotics into the 

biomedical field, human-following robots have the 

capacity to augment medical professionals’ capabilities, 

improve patient safety, and alleviate the strain on 

healthcare systems. Currently, many human-following 

robots in the biomedical field are assistive in nature, 

supporting human mobility and well-being [1]. Others are 

used in data collection applications such as, gait  

assessment [2–6]. In this paper, we explore the use of a 

Robot Operating System (ROS) based simulation 

environment for an omni-drive robot, with the aim at 

optimizing robotic vision algorithms that are intended on 

not only following a human subject from any perspective 

but also tracking the person and generating refined full-

body 3D human motion kinematic data from the on-board 

RGB-D sensor. 

While human-following robots offer promising 

potential in the biomedical field, their implementation is 

not without challenges. One of the main problems is 

mapping and navigation in a dynamic and unpredictable 

healthcare environment, where sudden changes in 

direction and obstacles hinder efficient robot movement. 

Additionally, the need for real-time tracking and accurate 

sensing technologies adds complexity to the system, 

requiring robust algorithms and sensor fusion techniques. 

Current methodologies cover a wide range of research 

including deep learning with Proportional–Integral–

Derivative (PID) control [7], SURF-based tracking with 

Kalman filtering [8], lead-lag and PID control [3, 9], 

potential field algorithms [10], and Timed-Elastic-Band 

planning [4]. However, developing and testing these 

algorithms on physical robotic systems can be time-

consuming and prone to maintenance delays. To overcome 

these limitations, researchers have turned to ROS-based 

simulation environments to refine human tracking 

algorithms before deploying them on hardware [11–13]. 

However, a drawback of current simulation environments 

is the lack of omnidrive models, as they typically use 

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 5, 2024

522doi: 10.18178/ijmerr.13.5.522-529

Keywords—Robot Operating System (ROS), Proportional–

Integral–Derivative (PID) control, multi-view human 

tracking, Mecanum wheeled robot, Kalman filter, robot 

control

https://orcid.org/0000-0002-8584-9040


differential drive locomotion. The problem with 

differential drive robotic systems is their lack of the ability 

to perform translation and rotation in any direction [14]. 

Using an omnidrive platform often simplifies the RGB-D 

mounting system for human pose estimation, eliminating 

the need for a dynamically controllable gimble. This 

eliminates the need to model the camera image in a 

separate frame as the robot thereby drastically simplifying 

practical application. 

An omnidrive robot ROS simulation environment offers 

numerous advantages in the field of robotics research and 

development. One key advantage is the ability to simulate 

and test the performance of omnidrive robots in a virtual 

environment before deploying them in the real world. This 

simulation environment allows researchers and engineers 

to assess the robot’s navigation capabilities, evaluate 

different control algorithms, and optimize its overall 

performance. By providing a realistic representation of the 

physical environment, including dynamic obstacles and 

varying terrain, the simulation environment enables 

researchers to anticipate and address potential challenges 

and limitations of the omnidrive robot. Additionally, the 

virtual environment allows for rapid prototyping and 

iterative design, facilitating quick iterations and 

modifications to improve the robot’s efficiency and 

effectiveness. Furthermore, the simulation environment 

offers a cost-effective solution, as it eliminates the need for 

physical hardware and reduces the risks associated with 

testing in real-world scenarios. Overall, a Mecanum 

wheeled robot simulation environment provides a valuable 

platform for experimentation, innovation, and refinement, 

accelerating the development of robust and reliable 

Mecanum wheeled robot systems. All code used for this 

work will be made publicly available in the near future. 

II. LITERATURE REVIEW 

Related works primarily fall into two distinct categories: 

ROS simulation environments and human following 

control algorithms. By analyzing and categorizing the 

available literature into these two core areas, researchers 

can gain a comprehensive understanding of the current 

state-of-the-art, identify research gaps, and pave the way 

for future advancements in omnidrive human-following 

robots within the biomedical domain. 

ROS-based simulation environments have emerged as a 

powerful tool for the development and evaluation of 

robotic systems, including human-following robots. There 

is a method for generating simulation environments in 

ROS and Gazebo with the aim of developing guiding 

robots for the elderly [12]. This paper acts as a practical 

tutorial for building a 2D or 3D simulation environment 

with the aim of designing a control algorithm for human-

guiding robots. Similarly, another method uses ROS and 

Gazebo to build a simulation environment for a human-

following robot [11]. This simulation environment also 

uses MakeHuman and Blender to build a more realistic 

environment in which depth RGB-D sensors can be 

simulated to track the human subject. There is another 

simulation environment for human-following [13] which 

provides a toolset for multi-robot tasks and can be easily 

extended to a leader-follower relationship to simulate a 

human subject and a following robot. The one aspect that 

all of these simulation environments lack is omnidrive 

robot control. To take advantage of the dynamic movement 

of an omnidrive system, we need a simulation environment 

designed for such a robot. 

The current state of the art in human-following robots 

showcases a wide range of methodologies. A Single Shot 

Detector is used to identify the subject and then a PID 

controller is used to follow the subject once identified [7]. 

A SURF-based method was proposed to track a human 

subject while maintaining a desired position to that subject 

through a linear control system using Kalman filter 

velocities derived from the pinhole camera model [8]. 

Traditional lead-lag and PID controllers are used to 

maintain the robot follower’s position with respect to the 

human subject [3, 9]. In contrast, a potential field 

algorithm is used to maintain the relative distance between 

the human and robot [10], and Elastic-Band planning was 

proposed that is more concerned with object avoidance in 

addition to the following of a human subject [4]. For all 

these methods, the vision system of the robot is overly 

complicated to compensate for the fact that differential 

drive robots lack the ability to perform smooth angular 

motion. While omnidrive control and navigation is a well-

explored subject [5], the incorporation of the omnidrive 

into a human-following robot simulation environment is a 

contribution that will benefit the robotics community, 

especially regarding biomedical applications. 

III. MECANUM-WHEELED RBOT SIMULATOR 

A well-scripted methods sections lays the foundation for 

your research by outlining the different methods you used 

to derive your results. The methods used to achieve the 

objectives must be described precisely and in sufficient 

detail, so as to allow a competent reader to repeat the work 

done by the author.  

A. Introduction to the Basic ROS Nodes 

Robot Operating System (ROS) is a flexible framework 

for writing robot software. One of its fundamental features 

is facilitating communication between different software 

modules called “nodes.” This communication is essential 

for coordinating various tasks and sensors in a robotic 

system. The following is an introduction to the basic 

communication between ROS nodes: 

(1) Node: In ROS, a “node” is a stand-alone software 

module that performs a specific task or function. 

Nodes are the building blocks of a ROS-based 

system. Each node can be written in various 

programming languages such as Python or C++, 

and they communicate with each other to achieve 

the desired robotic functionality. 

(2) Publisher-Subscriber: ROS communication 

primarily follows the publisher-subscriber model. 

In this model, nodes communicate by publishing 

data on specific topics, and other nodes subscribe 

to those topics to receive and process the data. 

Topics act as channels for data exchange. 

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 5, 2024

523



(3) Topics: A “topic” is a named bus over which data 

is exchanged between nodes. Topics are used to 

send and receive messages, which can be any type 

of data, such as sensor readings, control 

commands, or status updates. Nodes can publish 

data on one or more topics, and they can also 

subscribe to one or more topics. 

(4) Messages: Messages are structured data types that 

define the format and content of data exchanged 

between nodes on a topic. ROS provides a set of 

predefined message types, and users can also 

define custom message types to suit their specific 

needs. For example, a laser range finder node 

might publish messages containing distance and 

angle information. 

The schematic representation of the software 

architecture of the Mecanum wheeled robot simulator 

utilized in this experiment is illustrated in Fig. 1. The name 

of the node is documented within the elliptical shape, 

while the node from which the arrow originates assumes 

the role of the information publisher. Conversely, the node 

that the arrow points to assumes the role of the information 

subscriber. The arrow connecting line in the figure serves 

as a representation of the information conveyed in the 

Robot Operating System (ROS). This information is 

encapsulated within a topic, which contains more detailed 

digital data. 

 

  

Fig 1. ROS gazebo simulator software framework for Mecanum robot simulation under ROS and Gazebo. 

B. Robot Simulation under ROS and Gazebo 

ROS models robots and their environs using the 

Universal Robotics Description Format (URDF) which is 

an Extensible Markup Language (XML) file format that 

has been established for representing robot structure. 

However, it is not a “universal” description format because 

some information necessary for other robotics domains 

cannot be depicted in URDF, such as specific joint loops, 

friction, and other sensor properties. Files written in the 

XACRO (XML Macros) format allow for the definition of 

specific attributes that are absent from URDF. For example, 

<commandTopic> and <odometryTopic> can be defined 

in an XACRO file for Publish/Subscribe to ROS-topics 

related to the velocity and the pose of a robot. For this 

study, the model of the Mecanum wheeled robot is 

established through the URDF file which is shown in 

Fig. 2. A camera link (the box placed on the top front of 

the robot body) and a lidar sensor link (the cylinder on the 

top back of the robot body) are installed on the robot base 

model [15]. 

 

 

Fig 2. The Mecanum wheeled robot model (left) and the target red 

arrow model (right) in Gazebo. 

Another format to represent models in ROS is 

Simulation Description Format (SDF). It provides an 

exhaustive account of everything, from the world level to 

the robot level and everything in between. It is simple to 

add new pieces and alter existing ones, therefore it has a 

high degree of scalability. SDFs are often used in the 

Gazebo simulation for non-ROS objects like walls, people, 

and items. The target red arrow in our project is set by an 

SDF file which is illustrated in Fig. 2.  

C. Multi-view Following Setting 

Without loss of generality, we study the two following 

modes in the simulated setting as shown in Fig. 3. The first 

mode is back-view following where the robot keeps up 

with the target arrow by moving ahead and maintaining a 

certain distance between the target and the robot. The 

second mode is side-view following, which refers to the 

robot following the target arrow from the subject’s side by 

moving horizontally and keeping a certain distance from 

the target. In this mode, the robot’s position is always on 

the right side of the target, and the depth camera is 

constantly facing the target where the orientation of the 

robot is always perpendicular to the target. 

 

 

Fig. 3. Different following modes represented in 3D Gazebo simulation. 

(a) The back-view following mode where the robot’s travel trajectory 

consistently aligns with the target arrow; (b) The side-view following 

mode where the Mecanum-wheeled robot achieves lateral movement and 

remains aligned with the target arrow. 

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 5, 2024

524



D. Tracking and Controlling Algorithms  

In the virtual environment, additive Gaussian noise will 

be introduced to the robot’s observation data. The onboard 

Kalman filter will be employed to predict and track the 

target, consequentially improving the robustness, and 

maneuverability of the robot’s tracking. Finally, the PID 

control algorithm will be utilized to enhance the robot’s 

speed response and minimize the positional error.  The KF 

involves a linear dynamical model for state prediction and 

a Gaussian noise model for system modeling. It updates 

the state value using the observed value of the current state 

and the estimated value of the state at the previous moment 

based on a recursive formula [16].  In the KF, the observed 

data are predicted at each time step k from the immediately 

preceding instant, by the state-transition model F, 

contaminated with process noise wk, described by:  

 𝑋𝑘 = 𝐹𝑋𝑘−1 + 𝑤𝑘, 𝑤𝑘~𝑁(0, 𝑄𝑘), (1) 

where state 𝑋 =  [𝑥𝑘, 𝑦𝑘, 𝜃𝑘]𝑇 includes 2D position (𝑥, 𝑦) 

and yaw angle θ, and the observation state is:  

 𝑦𝑘 = 𝐻𝑋𝑘−1 + 𝑢𝑘, 𝑢𝑘~𝑁(0, 𝑄𝑌), (2) 

where H is the observation model, uk is the observation 

noise with zero mean and covariance QY.   

A PID controller is used for the speed control of the 

wheeled mobile robot thereby increasing stability of 

movement [17]. The PID controller computes the error 

signal which is the difference e(t) between the measured 

output and the desired set point. The PID controller general 

equation is:  

 𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡) + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
, (3) 

where 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑 , denote the coefficients for the 

proportional, integral, and derivative terms, respectively.  

IV. SIMULATION SETUP 

A. Data Generation 

In the virtual environment, the corresponding robot 

tracking path is obtained by generating a target path. The 

target’s path is determined by subscribing to the topic of 

the robot control system that governs the arrow’s position 

and speed, where the ROS Topic /target/odom and 

/target/cmd_vel involves the target’s orientation and 

velocity. After sending commands to the system regarding 

the target pose, the target robot can move to the desired 

location at a constant speed.  

To simulate the observation error, a pre-generated array 

containing Gaussian noise values is sequentially added to 

the target trajectory published by 

/turtle_tf_broadcaster_node. After receiving the 

broadcast’s location information, the listener sends 

movement commands to the Mecanum wheeled robot, thus 

the /turtle_tf_listener_node is picked as the channel for 

carrying the tracking and following algorithms. During 

robot tracking, the pose of both the target and the robot is 

published and recorded by the /odom topic. The whole 

process of data generation in ROS-Gazebo is depicted in 

Fig. 4.   

 

Fig. 4. Overview of data generation process in ROS Gazebo. 

Through the above process, we captured the raw data of 

robot trajectories from back-view following and side-view 

following as well as those of the target. The trajectories 

generated from ROS are plotted in Fig. 5 (a) and (b).  

 

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 5, 2024

525



 

Fig. 5. Overall trajectories of the robot follower. (a) Back following without optimization; (b)Side-view following without optimization; (c) Back 

following with optimization; (d) Side following with optimization. With the arrow signifying the initial direction of the target trajectory and the blue 

arrows representing the front facing direction of the Mecanum wheeled robot.  

B. Tracking and Control Parameters 

In the virtual environment, the target moves forward 

with a linear velocity of 0.2 𝑚/𝑠 at a constant speed and 

turns at an angular velocity of 0.1 rad/s. During the 

tracking process, the robot-to-target distance is constantly 

fixed at 1 meter, and the angle difference is kept at 0 in the 

back-view tracking mode and at 
π 

2
 in the side-view 

tracking mode.  

During the simulation, the speed variables of the 

Mecanum wheeled robot include linear speeds along x and 

y axes and the angular speed. The PID parameters for each 

following mode are listed in Table I.  

TABLE I.  PID PARAMETERS IN THE SIMULATION 

Following mode Parameters 𝑲𝒑 𝑲𝒊 𝑲𝒅 

Back-view 

Linear.x 2 0.01 0.2 

Linear.y 0 0 0 

Angular.z 1 0 0 

Side-view 

Linear.x 2 0.01 0.2 

Linear.y 1.8 0 0.1 

Angular.z 1 0 0 

 

 

 

In addition to PID, two parameters of the Kalman filter 

are worth mentioning. The observation model is 𝐻 =
[1,1,0] and the state-transition model 𝐹 is expressed as:  

 𝐹 =  [
1 0 𝛥𝑥
0 1 𝛥𝑦
0 0 1

], (4) 

where Δ𝑥 and Δ𝑦 denote the displacement per unit time in 

the x and y axes respectively.  

C. Quantitative Evaluation 

In the ROS environment, the robot's state primarily 

comprises the robot's orientation and position on the 

coordinate axis. Through different topics and nodes in the 

simulator, we can get the state of the following robot and 

the pose of the target to calculate the distance and angle 

difference between them. For instance, the state of the 

target is (𝑥𝑛
𝑡 , 𝑦𝑛

𝑡 , 𝜃𝑛
𝑡)  and the state of the following 

Mecanum wheeled robot is (𝑥𝑛
𝑟 , 𝑦𝑛

𝑟 , 𝜃𝑛
𝑟) at nth frame in the 

simulation. 𝜃𝑛
𝑟 is defined as the angle between the moving 

direction of the robot and the x-axis while 𝜃𝑛
𝑟 is defined in 

the same way for the target. As shown in Fig. 6, we define 

the positional distance and angular difference in the 

following robot.  

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 5, 2024

526



 

Fig. 6. 2D poses of a Mecanum wheeled robot and a target. 

The distance between the following robot and the target 

at time n can be computed as 

 𝐷𝑛 = √(𝑥𝑛
𝑟 − 𝑥𝑛

𝑡 )2 + (𝑦𝑛
𝑟 − 𝑦𝑛

𝑡)2.  (5) 

The angular difference of the target and robot angles is 

defined as: 

 Θ𝑛 = √(𝜃𝑛
𝑟 − 𝜃𝑛

𝑡 )2,  (6) 

where 𝛩𝑛 is the difference of the angle between the robot 

and the target at time n. We aim to maintain the positional 

and angular differences between the following robot and 

the target close to their preset values in our simulator. 

Therefore, two metrics are used for performance 

evaluation. The first metric is the L1-norm error of 

positional deviation between the actual and preset 

distances through all frames which is defined as:  

 𝐷𝑒𝑟𝑟 =
1

𝑁
∑ |𝐷𝑛 − 𝐷0|,𝑁

𝑛=1   (7) 

where 𝑁 is the total frame number, and 𝐷0 is the expected 

target-robot distance. The second metric is the L1-norm 

error of angle deviation between the actual angle and the 

expected one for all time frames:  

 Θ𝑒𝑟𝑟 =
1

𝑁
∑ |Θ𝑛 − Θ0|𝑁

𝑛=1 ,  (8) 

where the preset angle is 𝜃0. The configuration of tracking 

settings differs somewhat since we utilize multi-view 

tracking modes at various angles. While the distance 𝐷0 is 

1 m and the angle difference 𝜃0 = 0 degrees during back-

view following, these values are set to 1m and 90° during 

side-view tracking.  

The entire tracking process is depicted in Fig. 7. The 

complete tracking circuit consists of a U-shaped track, 

where the initial point of the target is (𝑥1
𝑡 , 𝑦1

𝑡 , 𝜃1
𝑡) and is 

located at one extremity of the U-shaped track, while the 

robot is located at (𝑥1
𝑟 , 𝑦1

𝑟 , 𝜃1
𝑟). In the back-view following 

mode, the robot initially follows a linear trajectory, upon 

traversing a specific distance, the object will go onto a 

curved trajectory where the positions of the target are 

expressed by (𝑥𝑛
𝑡 , 𝑦𝑛

𝑡 , 𝜃𝑛
𝑡) and (𝑥𝑚

𝑡 , 𝑦𝑚
𝑡 , 𝜃𝑚

𝑡 ), and the poses 

of the robot are represented by (𝑥𝑛
𝑟 , 𝑦𝑛

𝑟 , 𝜃𝑛
𝑟)  and 

(𝑥𝑚
𝑡 , 𝑦𝑚

𝑡 , 𝜃𝑚
𝑡 ), where 𝑚 > 𝑛 and 𝑚, 𝑛 ∈ [1, 𝑁].  

 

 

Fig. 7. 2D top-view of a robot tracking a target arrow in (a) back-view following and (b) side-view following modes along a U-shaped trajectory. 

After exiting the curved section, the object will 

transition onto another linear path, ultimately coming to a 

halt at the opposite extremity of the U-shaped track, 

(𝑥1
𝑟 , 𝑦1

𝑟 , 𝜃1
𝑟), where N is the frame number of the whole 

following process. During the whole following process, 

the robot moves with its orientation always aligned with 

the direction of the red arrow. In addition to the back-view 

following mode, the side-view following mode involves 

the robot maintaining a steady position on the side of the 

red target arrow while tracking the running track of the 

target. The lateral movement capability of the robot is 

attributed to the unique properties of the Mecanum wheels. 

In the process of following, it is imperative to maintain a 

consistent moving angle between the robot and the target. 

Specifically, for a back-view perspective, the difference 

angle between the moving target and the robot θn should 

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 5, 2024

527



be set to 0, while for a side-view perspective, it should be 

set to 
𝝅

2
. Additionally, it is essential to regulate the distance 

between the robot and the target, ensuring that it remains 

constant throughout the tracking process.  

The overall curve of the robot is smoother after 

adjusting the Kalman filter and PID controller (Fig. 8(a) 

and (c) blue line), and the error curve created may also 

demonstrate that the overall distance error and angle error 

are minimized (Fig. 8(b) and (d) blue line). Fig. 8(a) 

illustrates an initial increase in distance error, attributed to 

the robot initiating tracking upon detecting target 

movement. Nevertheless, the implementation of PID and 

filtering algorithms enhances the robot’s movement 

stability. Following optimization (Fig. 8(b) blue line), 

where the robot was initially trailing the target, the angle 

remains stable. During side-view tracking (Fig. 8(c) and  

Fig. 8(d)), it is evident that the error rises during the initial 

stages and turning process, subsequently decreasing upon 

returning to a straight route with the optimization. 

 

 

Fig. 8: Overall distance and angle errors of the robot follower before and after optimization. (a) back-view distance errors; (b) back-view angle errors; 

(c) side-view distance errors; (d) side-view angle errors. 

Table II shows the numerical result of tracking errors 

before and after optimization. In terms of numerical results 

alone, the results of optimization for the back-view 

tracking are better than those of side-view tracking. 

However, given the more complex model control of side-

view tracking and the percentage improvement, the 

accuracy of both tracking modes has improved by nearly 

55% which indicates that our approach is crucial in 

optimizing side-view tracking as well. The results allow us 

to validate the virtual environment we created and 

demonstrate the benefits of a Mecanum wheeled robot in 

multi-view tracking based on the significant effectiveness 

after optimization.   

TABLE II. TRACKING ERRORS FOR BACK-VIEW/SIDE-VIEW TRACKING 

Tracking errors W/o optimization With optimization 

𝐷𝑒𝑟𝑟 (back-view) (𝑚) 0.22 0.12 

Θ𝑒𝑟𝑟 (back-view) (∘) 12.2 5.3 

𝐷𝑒𝑟𝑟 (side-view) (𝑚) 0.32 0.14 

Θ𝑒𝑟𝑟 (side-view) (∘) 13.4 6.2 

V. CONCLUSION AND FUTURE WORK 

In this study, we have developed a new ROS-based 

virtual environment with a Gazebo simulator specifically 

designed for the development and evaluation of multi-view 

tracking and control on an Mecanum wheeled robot. 

Unlike existing ROS-based simulations that primarily 

utilize differential drive systems, our simulator 

incorporates the crucial aspect of an omnidrive system. 

The inclusion of omni-wheels in multi-view human 

tracking robots significantly simplifies the vision and 

control algorithms, for example, obviating the need for a 

controllable gimbal. To showcase the effectiveness of our 

environment, we have implemented a PID controller and a 

Kalman filter for two-view target tracking and following. 

This work provides a much-needed research and 

experimental tool for the development and evaluation of a 

mobile Mocap system which can be used for human-

centric multi-view gait analysis in a free-walking 

environment. 

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 5, 2024

528



Our future research will be two-fold. First, we will 

extend the virtual ROS platform with the Gazebo simulator 

to support more realistic motion trajectories and more 

view-specific following modes along with improved 

filtering and tracking algorithms. We will release the 

source code of this ROS environment in the future to 

promote related research activities. Secondly, we will 

translate the validated filtering and tracking algorithms to 

a real-world prototype Mecanum-wheeled robot system 

for view-specific human following and quantitative gait 

analysis which support the mobile Mocap technology for 

various clinical gait analysis applications.  

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

ZL and GF developed the overall research plan, ZL 

conducted the research and prepared the initial manuscript. 

CE and NL analyzed the data and revised the manuscript 

under GF’s supervision. All authors had approved the final 

version. 

REFERENCES 

[1] S. Li, K. Milligan, P. Blythe, Y. Zhang, S. Edwards, N. Palmarini, 

L. Corner, Y. Ji, F. Zhang, and A. Namdeo, “Exploring the role of 

human-following robots in supporting the mobility and wellbeing 

of older people,” Scientific Reports, vol. 13, no. 1, 6512, 2023. 
[2] Z. Chen, H. Zhang, A. Zaferiou, D. Zanotto, and Y. Guo, “Mobile 

robot assisted gait monitoring and dynamic margin of stability 

estimation,” IEEE Transactions on Medical Robotics and Bionics, 

vol. 4, no. 2, pp. 460–471, 2022. 
[3] D. Guffanti, A. Brunete, and M. Hernando, “Development and 

validation of a ROS-based mobile robotic platform for human gait 

analysis applications,” Robotics and Autonomous Systems, vol. 145, 

103869, 2021. 
[4] D. Guffanti, A. Brunete, M. Hernando, J. Rueda, and E. Navarro, 

“ROBOGait: A mobile robotic platform for human gait analysis in 

clinical environments,” Sensors, vol. 21, no. 20, 6786, 2021. 
[5] H. Taheri and C. X. Zhao, “Omnidirectional mobile robots, 

mechanisms and navigation approaches,” Mechanism and Machine 

Theory, vol. 153, 103958, 2020. 
[6] H. Zhang, Z. Chen, D. Zanotto, and Y. Guo, “Robot-assisted and 

wearable sensor-mediated autonomous gait analysis,” in Proc. 2020 

IEEE International Conference on Robotics and Automation 

(ICRA), IEEE, 2020, pp. 6795–6802.  

[7] R. Algabri and M.-T. Choi, “Deep-learning-based indoor human 

following of mobile robot using color feature,” Sensors, vol. 20, no. 

9, 2699, 2020. 
[8] M. Gupta, S. Kumar, L. Behera, and V. K. Subramanian, “A novel 

vision-based tracking algorithm for a human-following mobile 

robot,” IEEE Transactions on Systems, Man, and Cybernetics: 

Systems, vol. 47, no. 7, pp. 1415–1427, 2017. 

https://doi.org/10.1109/TSMC.2016.2616343  
[9] J. Chen and W.-J. Kim, “A human-following mobile robot 

providing natural and universal interfaces for control with wireless 

electronic devices,” IEEE/ASME Transactions on Mechatronics, 

vol. 24, no. 5, pp. 2377–2385, 2019. 
[10] J. Yuan, S. Zhang, Q. Sun, G. Liu, and J. Cai, “Laser-based 

intersection-aware human following with a mobile robot in indoor 

environments,” IEEE Transactions on Systems, Man, and 

Cybernetics: Systems, vol. 51, no. 1, pp. 354–369, 2018. 
[11] R. K. Megalingam, R. Anandu, D. H. TejaAnirudhBabu, G. Sriram, 

and V. S. YashwanthAvvari, “Implementation of a person 

following robot in ROS-gazebo platform,” in Proc. 2022 

International Conference for Advancement in Technology 

(ICONAT), IEEE, 2022, pp. 1–5.  
[12] K. Takaya, T. Asai, V. Kroumov, and F. Smarandache, “Simulation 

environment for mobile robots testing using ROS and Gazebo,” in 

Proc. 2016 20th International Conference on System Theory, 

Control and Computing (ICSTCC), 2016, pp. 96–

101.  https://doi.org/10.1109/ICSTCC.2016.7790647  
[13] A. Testa, A. Camisa, and G. Notarstefano, “ChoiRbot: A ROS 2 

toolbox for cooperative robotics,” IEEE Robotics and Automation 

Letters, vol. 6, no. 2, pp. 2714–2720, 2021. 
[14] M. Ashmore and N. Barnes, “Omni-drive robot motion on curved 

paths: The fastest path between two points is not a straight-line,” in 

Proc. AI 2002: Advances in Artificial Intelligence: 15th Australian 

Joint Conference on Artificial Intelligence Canberra, Australia, 

December 2–6, Springer, 2002, vol. 15, pp. 225–236.  
[15] The ROS Construct. (2019). Using Gazebo Plugins to Simulate and 

Control Mecanum Wheels Robot. [Online]. Available: 

https://www.theconstruct.ai/use-gazebo-plugins-simulate-control-

robot/ 
[16] A. Malaguti, M. Carraro, M. Guidolin, L. Tagliapietra, E. Menegatti, 

and S. Ghidoni, “Real-time tracking-by-detection of human motion 

in RGB-D camera networks,” in Proc. EEE International 

Conference on Systems, Man and Cybernetics (SMC), 2019, pp. 

3198–3204. 
[17] S. Shahin, R. Sadeghian, P. Sedigh, and M. T. Masouleh, 

“Simulation, control and construction of a four mecanum-wheeled 

robot,” in Proc. 2017 IEEE 4th International Conference on 

Knowledge-Based Engineering and Innovation (KBEI), 2017, pp. 

0315–0319. https://doi.org/10.1109/KBEI.2017.8324993  

 

Copyright © 2024 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 

 

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 5, 2024

529

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/



