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Kinematic linkages play a very vital role in the motion/power transmission and as well in the
generation of various workspaces/functions which in turn affect the type and nature of work
done by a given linkage. The usage of kinematic linkages is thus very much necessary in the
robot manipulators so as to obtain the necessary motion of the end-effectors to perform various
tasks assigned to the robot. The robot manipulator linkages are till date being generated and
selected based on the trial and error and there is as such no measure to decide or fix which one
of the available linkages is the most appropriate one for a specified task of the end-effector.
Detection of similarity between two or more linkages (Isomorphism) is very much important in
this regard so that before using the optimizing techniques itself we reduce the number of linkages
being considered for a fixed task to a minimal level, and Distinct number technique is very much
is a step towards this way. Isomorphic linkages of same configuration and their analyses is
based on the equations governing the size of workspace and the condition of workspace, with
the help of a ‘c’ programme an attempt is made for this purpose. The output of these programs
or the programs as a whole can be utilized by robot manufacturing company for choosing the
optimum kinematic linkage for the end-effectors of the manipulator for the robot being
manufactured by them to suite a specific purpose which in turn shall satisfy the requirements
and becomes a less time consuming process as well as economic for the manufacturer and
can even improve the efficiency of the end-effectors.
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INTRODUCTION
The synthesis of a kinematic chain is the most
important aspect while choosing it as a
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manipulator for a robot or to choose such
kinematic chain as a mechanism for a machine
component. Almost all the study reported on
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structural aspects of linkages and kinematic
chains pertain to generation of distinct
kinematic chains. All the relevant studies
reported so far would not have much
significance, if quantitative methods are not
developed to compare all the distinct
kinematic chains with the same number of
elements and degrees-of-freedom for different
aspects. It is always desirable to know the
anticipated behavior of the kinematic chains
without actually design and test on them. At
present, the designer has to depend upon
intuition to select the best possible kinematic
chain and this may not always lead to optimum
results. Hence quantitative methods, simple
and less time consuming are needed to
compare the kinematic chains at the
conceptual stage of design it self.

In this work Mathematical technique
called dist inct number technique is
discussed. In the process of graph or chain
generation, the isomorphic graphs are some
times encountered. These are kinematic
chains mathematically distinct but are
kinematically identical. So there is a need
to select one among them. It has been a
cumbersome task to identify manually such
isomorphic chains among numerous
kinematic chain inversions. Distinct number
technique is useful to make the above
process easier. Case studies have been
done by taking few kinematic chains of
interest and their results are discussed.

A programme in ‘C’ have been generated
for the above rating techniques and executed
so as to reduce the human errors in calculating
the above ratings and to reduce the work load
on the user, especially when the no.of links are
higher in number.

DESCRIPTION OF
TERMINOLOGY USED IN THE
PAPER
Isomorphism

If two kinematic chains are functionally
similar then they are said to be isomorphic
in nature.

For a specified number of links in a
kinematic chain, there may be a number of
inversions if the type of pairs in them are
altered, i.e. for a particular number of links one
can get a number of inversions if every pair is
interchanged with a higher one and a lower
one and vice versa.

But from them choosing one chain for a
given purpose is not so easy task and there
may be some isomorphic chains among them.
So there is a need to classify them and divide
the isomorphic chains. So that, one among the
isomorphic chains can be selected, that would
be the best one for the purpose. If this process
can be done manually, it is laborious and the
resources needed are very high.

So, to identify the isomorphic chains from
all the possible inversions of a given number
of linkages in a kinematic chain, a theoretical
method was developed which reduces the
initial cost of the design process to a great
extent.

Kinematic Synthesis

The design or creation of a mechanism to yield
the desired set of motion characteristics is
called kinematic synthesis. Synthesis may be
classified in broad as.

• Type Synthesis: This is the beginning phase
of the mechanism. It refers to the kind of
mechanism selected. It might be a linkage,
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a geared system, belts, pulleys or a cam
system.

• Number Synthesis: It deals with the number
of links, joints or pairs required to obtain
certain mobility, the study of mobility of a
mechanism in terms of degree-of-freedom
(d.o.f.).

• Dimensional Synthesis: It deals with the
determination of actual dimensions (lengths,
angles, etc.) of the mechanism to satisfy the
specified motion characteristics.

Manipulator

A manipulator is a mechanical motion device
used to access any point within the workspace.
Any industrial robot cannot exist with out a

manipulator. A manipulator can generally be
described as a kinematic chain.

Manipulators in general are of two types.

1. Serial manipulators

2. Parallel manipulators

Serial manipulators consist of a single
chain of links and joints connecting the tool to
ground.

Parallel manipulators are closed-loop
mechanisms in which the end-effector, is
connected to the base by at least two
independent kinematic chains. These consist
of multiple load-bearing paths between the tool
and ground (Figure 1).

Workspace of a Manipulator

The workspace of a manipulator is defined
as the volume of space in which the
manipulator is able to locate its end effectors.
Size of workspace depends on the
configuration of the manipulator, size of the
links and wrist joints.

Workspace can generally be classified as:

• Reachable workspace

• Dexterous workspace

Reachable Workspace

This is the region that can be reached by the
origin of the end-effectors frame with at least
one orientation.

Dexterous Workspace

The region or space where the end effectors
can reach every point in more than one
orientation is called dexterous workspace.

In general a dexterous workspace is a
subset of a reachable workspace.

Figure 1: Manipulators

(a) Serial Manipulator (b) Parallel Manipulator
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Requirements of a Robot
Manipulator

• A manipulator has the ability to access any
point within its workspace.

• A manipulator must be able to generate
accurate path/function.

• A manipulator must generate well
conditioned workspace.

Function Generation

The requirement in design is that causing an
output member to rotate, oscillate, or
reciprocate to a specified function of time or
function of input motion. This is called
generation of function.

Path Generation

The coupler of the mechanism may be made
to move along a part or full portion of a circular,
linear or an arbitrary curve, which is meant that
the output is generating a particular path.

Singular Points

These are the positions in the kinematic
linkage where it loses one or more degrees of
freedom. These are generally generated when
any two binary links in a kinematic chain comes
in collinear (Figure 2).

GRAPH REPRESENTATION
It is easy to deal a kinematic structure
especially a gear train when it is represented
by a graph. A graph consists of vertices and
the edges that join the vertices. A link or an
element of a gear train is represented by a
vertex: a small circle. A gear pair or joint in gear
trains is represented by an edge. Gear trains
consist of two types of pairs (i) turning pairs
and (ii) gear pairs. A turning pair is represented
by a single line edge while a gear pair is
represented by a double line edge. For
example, a simple gear train of Figure 3a
whose schematic representation (known as

Figure 2: Workspace and Singular Points
of a Manipulator
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Figure 3: Gear and Its Graph
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Levoi notation) is shown in Figure 3b and by
the graph in Figure 3c. In Figure 3b, element 1
is the carrier and elements 2 and 3 are the
gear wheels.

The turning pair edges 1-2 and 1-3 of Figure
3c are labeled as a and b corresponding to
the levels of the gear wheels 2 and 3 on the
carrier.

Let us consider another example to
understand graph theory. The gear train
shown Figure 3a has been added with an
outer envelope of gear ‘4’ which is shown in
Figure 4a. Its schematic/Levoi notation is
shown in Figure 4b. The graph of this
epicyclic gear train shall be obtained by
adding a gear pair between vertex 4 as well
as another gear pair between vertex 2 and

4.Therefore there shall be 2 gear pairs at
either of the vertices 1 and 2.

Similarly a kinematic chain can also be
represented by its graph as shown in Figures
5a and 5b; where Figure 5a represents a four
bar chain which has four links 1, 2, 3, 4. To
convert the linkage Figure 5a into a graph of
Figure 5b all the links have to be converted in
to vertices and the type of pair between each
links of Figure 5a will decide the type of the
connectivity between these vertices, i.e., if two
links are joined by a turning pair then their
corresponding vertices shall be joined using
a single line.

In the same manner the watts chain of
Figure 6a can be converted in to its graph as
shown in Figure 6b.

Figure 4: An Epicyclic Gear and its Graph
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DISTINCT NUMBER
TECHNIQUE
Different techniques available for testing
structural isomorphism in kinematic chains
are:

• Distance matrix method;

• Linkage characteristic polynomial;

• Edge permutation group method;

• Standard code technique; and

• Acyclic graph method.

In order to avoid confusion with larger
chains, computer aided methods, to test
isomorphism are needed. The method used
here is distinct number technique which can
be applied to kinematic linkages, gear trains,
cam mechanisms, hydraulic piston cylinder
mechanisms, and spring mechanisms, etc.

Distinct Number Technique

By using the graph of any kinematic chain
drawn using the above mentioned procedure,
this technique can be applied.

This technique involves 3 phases:

1. Generation of Adjacency matrix.

2. Framing of distinct matrix from Adjacency
matrix.

3. Calculation of distinct number and distinct
string from distinct matrix.

Phase 1

To frame Adjacency matrix we need to
understand the no of vertices in the graph of
the kinematic chain being considered; for
instance let us consider the graph of four bar
linkage showed in Figure 5a, there are four
vertices hence the Adjacency matrix shall be

a 4  4 matrix. Thus for any kinematic chain
the Adjacency matrix and hence the distinct
matrix shall be n  n matrix. Where n denotes
the number of vertices.

Framing of Adjacency matrix can be clearly
understood using an example .let us consider
the four bar linkage of Figures 5a and 5b whose
Adjacency matrix shall be 4  4 matrix and
every element in a given row of the matrix shall
denote the correlation between that particular
row number vertex (for example: first row
signifies first vertex, second row signifies
second vertex…). Thus the first row first
element shall signify the type of connectivity
between first vertex to itself; since any vertex
cannot connect with itself this particular
element shall be assigned a value zero (0).
Thus all the diagonal elements which signify
the connection between nth vertex to itself shall
be zero (0). The first row second element shall
be framed by correlating the type of
connectivity between vertex 1 and 2. Since in
Figure 5b vertex 1 and 2 are connected using
turning pair which is a lower pair according to
fundamentals of kinematics a we assigns a
value of 1. Similarly if there is any higher pair
(gear pairs) connectivity between any vertices
then we assign a value of 2.
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The above framed matrix is the Adjacency
matrix for a four bar linkage. Similarly the
Adjacency matrix of watts chain represented
in Figure 6a can be framed as below.
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The Adjacency matrix signifies the
Adjacency between any two vertices. For
instance the element of second row third
position in a watts chain shall tell the user that
what will be the type of connectivity between
vertex 2 and 3. At the same time it shall also
mention the user whether there will be a
connectivity or not between any two given
vertices.

Phase 2

The Adjacency matrix fails to signify any
specific aspects which can compare two
similar kinematic chains. This draw back can
be over come by using the distinct matrix.
Which is framed by comparing nth row, (n + 1),
(n + 2), … rows. This matrix shall also be
having same number of rows and columns as
that of Adjacency matrix hence. By comparing
the first row with itself shall specify the value of
first row first element in a distinct matrix.
Similarly first row second element shall be
framed out of comparison of first and second
rows and like wise the matrix can be framed.
Here we follow the rule that when ever we come
across two similar elements at ith position of
the two rows been compared we take the value
as zero; if we are encountered with two
dissimilar elements at any ith position of the
two rows being compared we take the sum of

these two iih elements. Finally we can frame
any ith element of a distinct matrix by taking
the algebraic sum of all the elemental
comparison as discussed above.



























041425

405241

150516

425041

241405

516150

Phase 3

All the row elements in distinct matrix shall be
added together to give the distinct value of that
particular row. For example 16 + 16 + 16 + 16
+ 18 + 18 = 100 is the distinct value of second
row of distinct matrix for watts chain. Like wise
all this distinct values shall be algebraically
added together to obtain the distinct number.
To designate the distinct number and distinct
values (which are combined to called as
distinct string). We give the relation as shown
below.

DI [A, B, C, D, E, F]

In the above notation DI stands for distinct
number which is the total of all the distinct
values and the terms mentioned in square
brackets are the distinct values arranged either
in ascending or descending order. For
example distinct number for watts chain is:

100 [16, 16, 16, 16, 18, 18]

Isomorphism from Distinct Number

Two kinematic chains can be compared for
their similar arrangement using their distinct
numbers. For example the distinct no of Watt’s
chain is 100 [16, 16, 16, 16, 18, 18] and the
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Stephenson’s chain is 100 [14, 14, 16, 16, 20,
20]. This tells us that on comparison these two
chains are not identical because even though
their distinct numbers are same the distinct
strings are dissimilar. Thus we can mention
that any two chains are said to be isomorphic
only if their distinct numbers along with all their
corresponding distinct string elements are
equal.

Algorithm for the programme developed:

Step 1: Input is taken for number of linkages
to be compared.

Step 2: Input is taken for number of links
present in each linkage.

Step 3: Input is taken for relative motion
between a link with every other link.

Step 4: Adjacency matrix for each linkage is
developed using logic conditions (as stated
in Phase 1).

Step 5: Distinct matrix for each linkage is
developed using logic conditions (as stated
in Phase 2).

Step 6: For every row of elements present in
distinct matrix, sum of all the elements in each
row is determined and arranged in ascending
order (as stated in Phase 3).

Step 7: Distinct number for each linkage is
determined by adding all the elements present
in distinct matrix (as stated in Phase 3).

Step 8: Distinct number and distinct string of
each linkage is compared with every other
linkage and if they are same they are said to
be “isomorphic”, if not said to be “non-
isomorphic”.

Results of 8 link single degree of freedom
chains using the programme:

Let us consider Linkage 1 is as shown in
Figure 7a.

The graph theory for the linkage is as shown
in the Figure 7b.

Figure 7: Eight Link Chain and Graph
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Let us consider Linkage 2 is as shown in
Figure 8a:

The graph theory for the linkage is as shown
in the Figure 8b.

Figure 8: Eight Link Chain and Graph
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C Programme (See Programme Input and
Output)

#include<stdio.h>

#include<conio.h>

main()

{

int a[64][64],b[64][64],a1[64][64],b1[64]
[64],a2[64],b2[64];

int i,j,k,n;
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Programme Input and Output
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int sum1=0,sum2=0,count=0;

int temp,e1=0,e2=0;

clrscr();

printf(“\n ENTER THE ORDER OF THE
MATRICES:”);

scanf(“%d”,&n);

printf(“\n ENTER THE FIRST MATRIX
ELEMENTS:”);

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

{

scanf(“%d”,&a[i][j]);

}

printf(“\n”);

}

printf(“\n ENTER THE SECOND MATRIX
ELEMENTS:”);

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

{

scanf(“%d”,&b[i][j]);

}

printf(“\n”);

}

getch();

printf(“\n The bits comparision is being
processed please wait....”);

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

{

for(k=0;k<n;k++)

{
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if(a[i][k]!=a[j][k])

e1++;

if(b[i][k]!=b[j][k])

e2++;

}

a1[i][j]=e1;

e1=0;

b1[i][j]=e2;

e2=0;

}

}

printf(“\n AFTER PROCESS :THE
RESULTANT 1ST MATRIX:\n”);

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

{

printf(“%d”,a1[i][j]);

}

printf(“\n”);

}

printf(“\n AFTER PROCESS:THE
SECOND RESULTANT 2ND MATRIX:”);

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

{

printf(“%d”,b1[i][j]);

}

printf(“\n”);

}

for(i=0;i<n;i++)

{

a2[i]=0;

b2[i]=0;

for(j=0;j<n;j++)

{

a2[i]=a2[i]+a1[j][i];

b2[i]=b2[i]+b1[j][i];

}

}

getch();

for(i=0;i<n-1;i++)

{

for(j=i+1;j<n;j++)

{

if(a2[i]>=a2[j])

{

temp=a2[i];

a2[i]=a2[j];

a2[j]=temp;

}

if(b2[i]>=b2[j])

{

temp=b2[i];

b2[i]=b2[j];

b2[j]=temp;

}

}
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}

temp=0;

for(i=0;i<n;i++)

{

sum1=sum1+a2[i];

sum2=sum2+b2[i];

}

printf(“\n THE RESULTANT 1ST
DISTINCT STRING IS:”);

for(i=0;i<n;i++)

{

printf(“\n %d”,a2[i]);

}

printf(“\n THE RESULTANT 2ND
DISTINCT STRING IS:”);

for(i=0;i<n;i++)

{

printf(“\n %d”,b2[i]);

}

printf(“\n RESULT 1:%4d[“,sum1);

for(i=0;i<n;i++)

{

printf(“%3d”,a2[i]);

}

printf(“]”);

printf(“\n RESULT 2:%4d[“,sum2);

for(i=0;i<n;i++)

{

printf(“%3d”,b2[i]);

}

printf(“]”);

for(i=0;i<n;i++)

{

if(a2[i]==b2[i])

count++;

}

if(count==n)

printf(“\n\n TWO CHAINS ARE
EQUAL:Hence Isomorphic”);

else

printf(“\n\n TWO CHAINS ARE
UNEQUAL:Hence Distinct”);

printf(“\n press any key to continue..”);

getch();

}

CONCLUSION
There are around 360 arrangements for a
single degree of freedom 7 link kinematic
chain. Like wise for any degree of freedom
and number of links there will be numerous
possible arrangements. But out of all these
arrangements many may be similar to one
another which cannot be visualized or
identified while generation. The method
proposed is very much useful for the designer
who is so far being burdened with the tedious
task of selecting a particular kinematic chain
with a particular number of links. This method
is further enhanced for its utility by using the
computerized programming developed by the
authors who are very user friendly and can
generate, detect, rate any configuration of
kinematic chains with a maximum limit up to
30 links with single degree of freedom. Thus
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this work is very futuristic, user friendly and is
useful for any designer of a gear train or a robot
manipulator.
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